Air Quality Analysis Supporting Documentation

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus Air Force Base (AFB) with T-7A Red Hawk aircraft. For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

The Air Conformity Applicability Model (ACAM) version 5.0.17b was used to perform an analysis to assess the potential air quality impacts associated with the Proposed Action and alternatives in accordance with Air Force Manual 32-7002, *Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process* (EIAP, 32 Code of Federal Regulations [CFR] Part 989) and the General Conformity Rule (40 Code of Federal Regulations Part 93, Subpart B). This appendix provides the ACAM results.

This appendix is presented in four sections corresponding to the four separate air quality Regions of Influence (ROI) based on regulatory requirements and the physical spatial distribution of the emissions sources associated with the Proposed Action and alternatives. The four ROIs are as follows:

• **<u>ROI 1: Columbus AFB</u>** – includes all Columbus AFB airfield operations and construction actions

Counties included:

Lowndes, MS

Clay, MS

Monroe, MS

• **ROI 2: Birmingham and Birmingham 2 MOAs** – includes aircraft operations within Birmingham and Birmingham 2 MOAs

Counties included:

Bibb, AL

Dallas, AL

Greene, AL

Hale, AL

Marengo, AL Perry, AL

Sumter, AL

ROI 3: Range R-4404 – includes aircraft operations within Range R-4404 <u>Counties included:</u>

Noxubee County, MS

• **<u>ROI 4: MTRs</u>** – includes aircraft operations within IR-066, IR-068, IR-091, VR-1014, and VR-1031

Counties included:

Autauga, AL	Marengo, AL	Carroll, MS	Quitman, MS
Bibb, AL	Marion, AL	Chickasaw, MS	Sunflower, MS
Blount, AL	Perry, AL	Clay, MS	Tallahatchie,
Chilton, AL	Pickens, AL	Coahoma, MS	MS
Choctaw, AL	Shelby, AL	Grenada, MS	Tate, MS
Clarke, AL	St. Clair, AL	Itawamba, MS	Tippah, MS
Clay, AL	Talladega, AL	Kemper, MS	Tishomingo, MS
Colbert, AL	Tallapoosa, AL	Lafayette, MS	Tunica, MS
Coosa, AL	Tuscaloosa, AL	Lee, MS	Union, MS
Cullman, AL	Walker, AL	Leflore, MS	Webster, MS
Dallas, AL	Wilcox, AL	Lowndes, MS	Yalobusha, MS
Elmore, AL	Winston, AL	Marshall, MS	Chester, TN
Franklin, AL	Lee, AR	Monroe, MS	Decatur, TN
Greene, AL	Phillips, AR	Montgomery, MS	Hardeman, TN
Hale, AL	Alcorn, MS	Noxubee, MS	Hardin, TN
Jefferson, AL	Benton, MS	Panola, MS	Lawrence, TN
Lauderdale, AL	Bolivar, MS	Pontotoc, MS	McNairy, TN
Lawrence, AL	Calhoun, MS	Prentiss, MS	Wayne, TN

Columbus AFB is in Lowndes County, Mississippi. In addition to Lowndes County, Columbus AFB airfield operations below 3,000 feet occur in Monroe and Clay Counties. Lowndes, Monroe, and Clay Counties have been designated as in attainment for all criteria pollutants. The table below outlines the attainment status and the *de minimis* threshold under the General Conformity Rule for the counties within ROIs 2, 3 and 4 (i.e., counties underlying the MTRs, MOAs, and Range R-4404).

County	Airspace	Attainment Status	<i>de minimis</i> Threshold
Autauga County, AL	VR-1031	Unclassifiable/Attainment	None
Bibb County, AL	VR-1031, Birmingham 2 MOA	Unclassifiable/Attainment	None
Blount County, AL	IR-066, VR-1014	Unclassifiable/Attainment	None
Chilton County, AL	VR-1031	Unclassifiable/Attainment	None
Choctaw County, AL	VR-1031	Unclassifiable/Attainment	None
Clarke County, AL	VR-1031	Unclassifiable/Attainment	None
Clay County, AL	VR-1031	Unclassifiable/Attainment	None
Colbert County, AL	IR-066	Unclassifiable/Attainment	None
Coosa County, AL	VR-1031	Unclassifiable/Attainment	None
Cullman County, AL	IR-066, VR-1014	Unclassifiable/Attainment	None
Dallas County, AL	VR-1031, Birmingham 2 MOA	Unclassifiable/Attainment	None
Elmore County, AL	VR-1031	Unclassifiable/Attainment	None
Franklin County, AL	IR-066, VR-1014	Unclassifiable/Attainment	None
Greene County, AL	VR-1031, Birmingham MOA, Birmingham 2 MOA	Unclassifiable/Attainment	None
Hale County, AL	VR-1031, Birmingham MOA, Birmingham 2 MOA	Unclassifiable/Attainment	None
Jefferson County, AL	VR-1014	Maintenance for the PM _{2.5} NAAQS	100 tpy for PM _{2.5} 100 tpy for NO _X 100 tpy for VOCs 100 tpy for SO _X 100 tpy for NH ₃
Lauderdale County, AL	IR-066	Unclassifiable/Attainment	None
Lawrence County, AL	VR-1014	Unclassifiable/Attainment	None
Marengo County, AL	VR-1031, Birmingham MOA, Birmingham 2 MOA	Unclassifiable/Attainment	None
Marion County, AL	IR-066, VR-1014	Unclassifiable/Attainment	None
Perry County, AL	VR-1031, Birmingham 2 MOA	Unclassifiable/Attainment	None
Pickens County, AL	VR-1014, VR-1031	Unclassifiable/Attainment	None

County	Airspace	Attainment Status	<i>de minimis</i> Threshold
Shelby County, AL	VR-1031	Maintenance for the PM _{2.5} NAAQS	100 tpy for PM _{2.5} 100 tpy for NO _X 100 tpy for VOCs 100 tpy for SO _X 100 tpy for NH ₃
St. Clair County, AL	VR-1031	Unclassifiable/Attainment	None
Sumter County, AL	Birmingham MOA, Birmingham 2 MOA	Unclassifiable/Attainment	None
Talladega County, AL	VR-1031	Unclassifiable/Attainment	None
Tallapoosa County, AL	VR-1031	Unclassifiable/Attainment	None
Tuscaloosa County, AL	VR-1014, VR-1031	Unclassifiable/Attainment	None
Walker County, AL	IR-066, VR-1014	Maintenance for the PM _{2.5} NAAQS	100 tpy for PM _{2.5} 100 tpy for NO _X 100 tpy for VOCs 100 tpy for SO _X 100 tpy for NH ₃
Wilcox County, AL	VR-1031	Unclassifiable/Attainment	None
Winston County, AL	IR-066, VR-1031	Unclassifiable/Attainment	None
Lee County, AR	IR-068	Unclassifiable/Attainment	None
Phillips County, AR	IR-068	Unclassifiable/Attainment	None
Alcorn County, MS	IR-066	Unclassifiable/Attainment	None
Benton County, MS	IR-066, IR-091	Unclassifiable/Attainment	None
Bolivar County, MS	IR-068	Unclassifiable/Attainment	None
Calhoun County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Carroll County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Chickasaw County, MS	IR-091	Unclassifiable/Attainment	None
Clay County, MS	IR-091	Unclassifiable/Attainment	None
Coahoma County, MS	IR-068	Unclassifiable/Attainment	None
Grenada County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Itawamba County, MS	IR-066, VR-1014	Unclassifiable/Attainment	None
Kemper County, MS	VR-1031	Unclassifiable/Attainment	None
Lafayette County, MS	IR-091	Unclassifiable/Attainment	None
Lee County, MS	IR-066	Unclassifiable/Attainment	None
Leflore County, MS	IR-068	Unclassifiable/Attainment	None
Lowndes County, MS	VR-1031	Unclassifiable/Attainment	None
Marshall County, MS	IR-091	Unclassifiable/Attainment	None
Monroe County, MS	IR-066, VR-1014	Unclassifiable/Attainment	None
Montgomery County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Noxubee County, MS	VR-1031, R-4404	Unclassifiable/Attainment	None
Panola County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Pontotoc County, MS	IR-091	Unclassifiable/Attainment	None
Prentiss County, MS	IR-066	Unclassifiable/Attainment	None

County	Airspace	Attainment Status	de <i>minimis</i> Threshold
Quitman County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Sunflower County, MS	IR-068	Unclassifiable/Attainment	None
Tallahatchie County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Tate County, MS	IR-091	Unclassifiable/Attainment	None
Tippah County, MS	IR-066	Unclassifiable/Attainment	None
Tishomingo County, MS	IR-066	Unclassifiable/Attainment	None
Tunica County, MS	IR-068	Unclassifiable/Attainment	None
Union County, MS	IR-066, IR-091	Unclassifiable/Attainment	None
Webster County, MS	IR-068, IR-091	Unclassifiable/Attainment	None
Yalobusha County, MS	IR-068	Unclassifiable/Attainment	None
Chester County, TN	IR-066	Unclassifiable/Attainment	None
Decatur County, TN	IR-066	Unclassifiable/Attainment	None
Hardeman County, TN	IR-066	Unclassifiable/Attainment	None
Hardin County, TN	IR-066	Unclassifiable/Attainment	None
Lawrence County, TN	IR-066	Unclassifiable/Attainment	None
McNairy County, TN	IR-066	Unclassifiable/Attainment	None
Wayne County, TN	IR-066	Unclassifiable/Attainment	None

Sources: (1) 40 CFR § 93.153 (2) USEPA. 2022. Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants: Alabama, Arkansas, Mississippi, and Tennessee. As of June 30, 2022.

Key: NAAQS = National Ambient Air Quality Standard; NH_3 = ammonia; NO_X = nitrogen oxides; $PM_{2.5}$ = particulate matter less than or equal to 2.5 microns in diameter; SO_X = sulfur oxides; tpy = tons per year; VOCs = volatile organic compounds

The emission factors presented in this Appendix are imbedded within ACAM and come from the following DAF documents: (1) *Air Emissions Guide for Air Force Stationary Sources, Methods for Estimating Emissions of Air Pollutants for Stationary Sources at U.S. Air Force Installations,* Air Force Civil Engineer Center (June 2020), and (2) *Air Emissions Guide for Air Force Mobile Sources, Methods for Estimating Emissions of Air Pollutants for Air Pollutants for Mobile Sources at U.S. Air Force Installations,* Air Force Installations, Air Force Civil Engineering Center (June 2020). Additional data used to prepare the ACAM reports are below.

Time in Mode (TIM) Summary for T-7A and T-38C aircraft within the ROIs

Table 2. TIMs Summary for ROI 1: Columbus AFB

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Columbus AFB T-7A TIMs Sum	imary				
LTO Flight	0.00	0.01	0.73	0.42	4.03
LTO Taxi	16.95	0.00	0.00	0.00	0.00
Total LTO	16.95	0.01	0.73	0.42	4.03
Closed Patterns	0.00	0.00	0.00	3.56	0.00

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Columbus AFB T-38C TIMs Sur	nmary				
LTO Flight	0.00	0.52	0.22	0.46	3.91
LTO Taxi	18.35	0.00	0.00	0.00	0.00
Total LTO	18.35	0.52	0.22	0.46	3.91
Closed Patterns	0.00	0.00	0.00	3.56	0.00

Key: AB = afterburn; LTO = landing and takeoff cycle mil = military; min = minutes

Table 3. TIMs Summary for ROI 2: Birmingham and Birmingham 2 MOAs

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Birmingham and Birmingham 2 MOAs T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	19.55	0.00	0.00
Birmingham and Birmingham 2 MOAs T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	19.55	0.00	0.00

Key: AB = afterburn; LTO = landing and takeoff cycle mil = military; min = minutes

Table 4. TIMs Summary for ROI 3: Range R-4404

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
R-4404 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	19.50	0.00	0.00
R-4404 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	19.50	0.00	0.00

Key: AB = afterburn; LTO = landing and takeoff cycle mil = military; min = minutes

Table 3. TIMs Summary for ROI 4: MTRs

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
IR-066 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	3.74	0.00
IR-066 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	3.74	0.00
IR-068 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	27.48	0.00
IR-068 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	27.48	0.00
IR-091 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	27.48	0.00
IR-091 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	27.48	0.00
VR-1014 T-7A TIMs Summary					

	ldle In/Out (min)	Takeoff AB (min)	Takeoff Mil (min)	Climbout (min)	Approach (min)
Low Flight Pattern	0.00	0.00	0.00	38.09	0.00
VR-1014 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	38.09	0.00
VR-1031 T-7A TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	32.15	0.00
VR-1031 T-38C TIMs Summary					
Low Flight Pattern	0.00	0.00	0.00	32.15	0.00

Key: AB = afterburn; LTO = landing and takeoff cycle mil = military; min = minutes

ROI 1: Columbus AFB

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- b. Action Title: T-7A Recapitalization at Columbus AFB Alternative 1
- c. Project Number/s (if applicable):

d. Projected Action Start Date: 8 / 2024

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2024				
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATOR	Y AREA			
VOC	0.205	250	No	
NOx	1.005	250	No	
СО	1.689	250	No	
SOx	0.004	250	No	
PM 10	0.284	250	No	
PM 2.5	0.035	250	No	
Pb	0.000	25	No	
NH3	0.001	250	No	
CO2e	397.5			

2025

2025			
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	1.069	250	No
NOx	4.712	250	No
СО	7.091	250	No
SOx	0.017	250	No
PM 10	8.445	250	No
PM 2.5	0.182	250	No
Pb	0.000	25	No
NH3	0.004	250	No
CO2e	1603.9		

2026

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY AREA			
VOC	1.804	250	No

NOx	7.095	250	No
CO	10.840	250	No
SOx	0.024	250	No
PM 10	0.620	250	No
PM 2.5	0.240	250	No
Pb	0.000	25	No
NH3	0.010	250	No
CO2e	2363.7		

2027

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	1.009	250	No
NOx	2.459	250	No
CO	4.117	250	No
SOx	0.009	250	No
PM 10	0.086	250	No
PM 2.5	0.086	250	No
Pb	0.000	25	No
NH3	0.003	250	No
CO2e	886.1		

2028

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	17.466	250	No
NOx	53.652	250	No
CO	-200.780	250	No
SOx	1.675	250	No
PM 10	-6.253	250	No
PM 2.5	-4.297	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	6325.7		

2029

Pollutant	Action Emissions		CE INDICATOR
ronutant			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	30.134	250	No
NOx	129.447	250	No
CO	-637.064	250	No
SOx	2.783	250	No
PM 10	-18.912	250	No
PM 2.5	-13.078	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	11635.4		

2030			
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR		ICE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	29.647	250	No
NOx	150.497	250	No
СО	-815.025	250	No
SOx	2.619	250	No
PM 10	-23.807	250	No
PM 2.5	-16.495	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	11586.6		

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	29.647	250	No
NOx	150.497	250	No
CO	-815.025	250	No
SOx	2.619	250	No
PM 10	-23.807	250	No
PM 2.5	-16.495	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	11586.6		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 8 / 2024

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- ACUIV	vity List:	
	Activity Type	Activity Title
2.	Aircraft	2028 Add T-7As and LTOs
3.	Aircraft	2028 Add T-7A TGOs
4.	Aircraft	2028 Remove T-38C and LTOs
5.	Aircraft	2028 Remove T-38C TGOs
6.	Aircraft	2029 Add T-7As and LTOs
7.	Aircraft	2029 Add T-7A TGOs
8.	Aircraft	2029 Remove T-38C and LTOs
9.	Aircraft	2029 Remove T-38C TGOs
10.	Aircraft	2030 Add T-7As and LTOs
11.	Aircraft	2030 Add T-7A TGOs
12.	Aircraft	2030 Remove T-38C and LTOs
13.	Aircraft	2030 Remove T-38C TGOs
14.	Aircraft	2028 T-7A Increase Trim Test and Test Cell
15.	Aircraft	2028 T-38C Decrease Trim Test and Test Cell
16.	Aircraft	2029 T-7A Increase Trim Test and Test Cell
17.	Aircraft	2029 T-38C Decrease Trim Test and Test Cell
18.	Aircraft	2030 T-7A Increase Trim Test and Test Cell
19.	Aircraft	2030 T-38C Decrease Trim Test and Test Cell
20.	Personnel	Add 43 personnel
21.	Personnel	Remove 74 personnel
22.	Construction / Demolition	MILCON: Construct GBTS Facility
23.	Construction / Demolition	MILCON: Construct UMT Facility
24.	Construction / Demolition	MILCON: Construct Hush House
25.	Construction / Demolition	MILCON: Construct Aircraft Shelters
26.	Construction / Demolition	MILCON: Addition to Egress Shop
27.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
28.	Construction / Demolition	FSRM: Renovate Building 452 (Hangar 3)
29.	Construction / Demolition	FSRM: Wash Rack Renovation (Building 454)
30.	Construction / Demolition	FSRM: Antenna Farm
31.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
32.	Construction / Demolition	FSRM: Airfield Improvements
33.	Construction / Demolition	FSRM: Trim Pad
34.	Heating	Heating for New Facilities

- Activity List:

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7As and LTOs
- Activity Description:

Starting in 2028, add 21 T-7As and increase LTOs by 5,103.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	35.074924
SO _x	1.613344
NO _x	16.411266
СО	71.184814
PM 10	0.430330

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.382371
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4875.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

	in the spectrum (includes)
Pollutant	Emissions Per Year (TONs)
VOC	35.074924
SO _x	1.613344
NO _x	16.411266
CO	71.184814
PM 10	0.430330

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.382371
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4875.2

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	21
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	5103
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of AP per Aircraft	J Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7A TGOs
- Activity Description: Starting in 2028, increase T-7A TGOs by 11,227.
- Activity Start Date Start Month: 1 Start Year: 2028
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	5.301943
SO _x	2.815315
NO _x	40.140052
CO	5.857730
PM 10	0.302832

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.256242
Pb	0.000000
NH ₃	0.000000
CO ₂ e	8572.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	5.301943
SO _x	2.815315
NO _x	40.140052
CO	5.857730
PM 10	0.302832

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.256242
Pb	0.000000
NH ₃	0.000000
CO ₂ e	8572.6

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	21
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	11227
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 Remove T-38C and LTOs

- Activity Description:

Starting in 2028, remove 23 T-38Cs and decrease LTOs by 5,889.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
СО	-226.520932
PM 10	-5.555029

Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
CO	-226.520932
PM 10	-5.555029

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	5889
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

			D • •	
Number of AP	U Operation	Exempt	Designation	Manufacturer
			8	
per Aircraft	Hours for Each	Source?		
I				
	LTO			

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----------------	----	-------	--------	-------------------

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Remove T-38C TGOs

- Activity Description: Starting in 2028, decrease T-38C TGOs by 12,956.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-2.201160
SO _x	-0.847209
NO _x	-0.554249
CO	-51.521407
PM 10	-1.417294

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.546331
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-2560.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (IONs)		Pollutant	Emissions Per Year (TONs)
VOC	-2.201160		PM 2.5	-0.546331
SO _x	-0.847209		Pb	0.000000
NO _x	-0.554249		NH ₃	0.000000
СО	-51.521407]	CO ₂ e	-2560.6

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:			
- Default Settings Used:	No		
- Flight Operations TIMs (T	ime In Mode)		
Taxi/Idle Out [Idle] (mi	ns):	0	
Takeoff [Military] (min	s):	0	
Takeoff [After Burn] (n	nins):	0	
Climb Out [Intermedia	te] (mins):	3.56	
Approach [Approach] (mins):	0	
Taxi/Idle In [Idle] (mins	5):	0	
- Trim Test			
Idle (mins):	12		
Approach (mins):	27		
Intermediate (mins):	9		
Military (mins):	9		
AfterBurn (mins):	3		

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60)^{*} (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----	----	-------	--------	-------------------

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Add T-7As and LTOs

- Activity Description:

Starting in 2029, add 31 T-7As and increase LTOs by 7,533.

- Activity Start Date Start Month: 1 Start Year: 2029
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	51.777269
SO _x	2.381603
NO _x	24.226154
СО	105.082344
PM 10	0.635249

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.564452
Pb	0.000000
NH ₃	0.000000
CO ₂ e	7196.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	51.777269	PM 2.5	0.564452
SO _x	2.381603	Pb	0.000000
NO _x	24.226154	NH ₃	0.000000
СО	105.082344	CO ₂ e	7196.7
PM 10	0.635249		

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	31
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	7533
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxinary Power Unit (APU) Emission Factor (10/117)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Add T-7A TGOs
- Activity Description: Starting in 2029, increase T-7A TGOs by 16,572.
- Activity Start Date

Start Month:1Start Year:2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	7.826115	I	PM 2.5	0.378235
SO _x	4.155642	I	Pb	0.000000
NO _x	59.250106	1	NH ₃	0.000000
СО	8.646504	(CO ₂ e	12653.9
PM 10	0.447005			

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	7.826115	PM 2.5	0.378235

SO _x	4.155642
NO _x	59.250106
СО	8.646504
PM 10	0.447005

Pb	0.000000
NH ₃	0.000000
CO ₂ e	12653.9

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	31
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	16572
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0
- Default Settings Used: No	
- Flight Operations TIMs (Time In Mode)	

0
0
0
3.56
0
0

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Remove T-38C and LTOs

- Activity Description:

Starting in 2029, remove 45 T-38Cs and decrease LTOs by 11,521.

- Activity Start Date

Start Month: 1 Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-41.486675
SO _x	-3.666342
NO _x	-7.547858
СО	-443.156335
PM 10	-10.867632

Pollutant	Emissions Per Year (TONs)
PM 2.5	-8.687378
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-9313.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-41.486675	PM 2.5	-8.687378
SO _x	-3.666342	Pb	0.000000
NO _x	-7.547858	NH ₃	0.000000
CO	-443.156335	CO ₂ e	-9313.3
PM 10	-10.867632		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234

Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		45
Number of Annual L	Os (Landing and Take-off) cycles for all Aircraft:	11521
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs)

AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Remove T-38C TGOs
- Activity Description: Starting in 2029, decrease T-38C TGOs by 25,346.
- Activity Start Date

Start Month:	1
Start Year:	2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.306160
SO _x	-1.657407
NO _x	-1.084285
СО	-100.792034
PM 10	-2.772672

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.068795
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-5009.4

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-4.306160	PM 2.5	-1.068795
SO _x	-1.657407	Pb	0.000000
NO _x	-1.084285	NH ₃	0.000000
СО	-100.792034	CO ₂ e	-5009.4
PM 10	-2.772672		

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
0	

- Aircraft & Engine Surrogate	
Is Aircraft & Engine a Surrogate?	No
Original Aircraft Name:	
Original Engine Name:	

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

An cruit & Engine Emissions I actors (10/100015 fact)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	25346
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7As and LTOs
- Activity Description: Starting in 2030, add 9 T-7As and increase LTOs by 2,187.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	15.032110
SO _x	0.691433
NO _x	7.033400
СО	30.507777
PM 10	0.184427

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.163873
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2089.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	15.032110		PM 2.5	0.163873
SO _x	0.691433		Pb	0.000000
NO _x	7.033400		NH ₃	0.000000
СО	30.507777		CO ₂ e	2089.4
PM 10	0.184427]		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	2187
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

8.475
0.73
0.01
0.42
4.03
8.475

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)	- Auxiliary	y Power I	Unit (APU) Emission	Factor ((lb/hr)
--	-------------	-----------	-----------	------------	----------	---------

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Add T-7A TGOs
- Activity Description: Starting in 2030, increase T-7A TGOs by 4,812.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.272464
SO _x	1.206671
NO _x	17.204412

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.109828
Pb	0.000000
NH ₃	0.000000

СО	2.510679
PM 10	0.129797

CO ₂ e	3674.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	2.272464
SO _x	1.206671
NO _x	17.204412
СО	2.510679
PM 10	0.129797

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.109828
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3674.3

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	4812
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C and LTOs

- Activity Description: Starting in 2030, remove 17 T-38Cs and decrease LTOs by 4,353.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-15.674985
SO _x	-1.385260
NO _x	-2.851821
СО	-167.438549
PM 10	-4.106137

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.282368
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3518.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	-15.674985		PM 2.5	-3.282368
SO _x	-1.385260		Pb	0.000000
NO _x	-2.851821		NH ₃	0.000000
CO	-167.438549		CO ₂ e	-3518.9
PM 10	-4.106137]		

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

		ins i accors		uei)				
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	4353
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----	----	-------	--------	-------------------

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C TGOs
- Activity Description: Starting in 2030, decrease T-38C TGOs by 9,577.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-1.627085

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.403845

SO _x	-0.626252
NO _x	-0.409698
СО	-38.084325
PM 10	-1.047655

Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1892.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-1.627085
SO _x	-0.626252
NO _x	-0.409698
СО	-38.084325
PM 10	-1.047655

& APU) partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.403845
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1892.8

13.2 Aircraft & Engines

Number of Engines:

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

2

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

0 0

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		17
Number of Annual L7	Os (Landing and Take-off) cycles for all Aircraft:	9577
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	
Takeoff [Military] (mins):	

Takeoff [After Burn]	0		
Climb Out [Intermed	3.56		
Approach [Approach]	0		
Taxi/Idle In [Idle] (mi	0		
- Trim Test			
Idle (mins):			
Annroach (mins).			

Approach (mms):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	(======) (=====)			
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	_	
	LTO			

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

)	()					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2028, add trim test and engine test cell for 21 T-7As.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.221964
SO _x	0.072285
NO _x	1.233454
СО	3.807975
PM 10	0.086592

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.077654
Pb	0.000000
NH ₃	0.000000
CO ₂ e	218.5

Pollutant

PM 2.5

Pb

NH₃ CO₂e **Emissions Per Year (TONs)**

0.039568

 $\frac{0.000000}{0.000000}$

120.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.121136
SO _x	0.039746
NO _x	0.660320
СО	1.921205
PM 10	0.044158

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.100828
SO _x	0.032539
NO _x	0.573135
СО	1.886770
PM 10	0.042434

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.038086
Pb	0.000000
NH ₃	0.000000
CO ₂ e	98.3

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation:
 T-7A
 Engine Model:
 F404-GE-102
 Primary Function:
 Trainer
 Aircraft has After burn:
 Yes
 Number of Engines:
 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	21
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	6.8
Takeoff [Military] (mins):	0.25
Takeoff [After Burn] (mins):	0.25
Climb Out [Intermediate] (mins):	1.4
Approach [Approach] (mins):	4
Taxi/Idle In [Idle] (mins):	4.4

- Trim Test	
Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

_

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aircraft Engine Test Cell

14.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 21

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

14.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

14.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 T-38C Decrease Trim Test and Test Cell
- Activity Description:

Starting in 2028, remove trim test and engine test cell for 23 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2028
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.441333
SO _x	-0.107957
NO _x	-0.314704
СО	-5.605788
PM 10	-0.118552

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.044035
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-326.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.210261
SO _x	-0.054556
NO _x	-0.155328
CO	-2.774568
PM 10	-0.058050

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.231073
SO _x	-0.053401
NO _x	-0.159375
CO	-2.831220
PM 10	-0.060502

t & APU) part :	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.019822
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-164.9

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.024212
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.4

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- An crait & Englic Emissions Factors (10/100010 fuci)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test

Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	Number of APU	Operation	Exempt	Designation	Manufacturer
_		operation	Lacmpt	Designation	1) fullutuetui ei
_	per Aircraft	Hours for Each	Source?		
	per Antran	Hours for Each	Source:		
	-	ITO			
		LTO			

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

15.5 Aircraft Engine Test Cell

15.5.1 Aircraft Engine Test Cell Assumptions

```
- Engine Test Cell
Total Number of Aircraft Engines Tested Annually: 46
```

- Default Settings Used: No

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3
Idle Duration (mins):	0
Approach Duration (mins):	12
Intermediate Duration (mins):	0
Military Duration (mins):	8
After Burner Duration (mins):	2

15.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

15.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location Clay, MS; Lowndes, MS; Monroe, MS County: Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2029, add trim test and engine test cell for 31 T-7As.

- Activity Start Date Start Month: 1

Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.327661
SO _x	0.106706
NO _x	1.820814
СО	5.621297
PM 10	0.127826

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.114632
Pb	0.000000
NH ₃	0.000000
CO ₂ e	322.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		
VOC	0.178820		
SO _x	0.058673		
NO _x	0.974757		
СО	2.836065		
PM 10	0.065185		

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.148841
SO _x	0.048033
NO _x	0.846056
СО	2.785232
PM 10	0.062641

PM 2.5	0.058410
Pb	0.000000
NH ₃	0.000000
CO ₂ e	177.3

Pollutant

Emissions Per Year (TONs)

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.056222
Pb	0.000000
NH ₃	0.000000
CO ₂ e	145.2

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1					
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:						
16.2.2 Aircraft & Engines	Emission Factor(s)					
 Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors. 	s Factors (lb/1000lb fuel) Contact Air Quality Subject Matter Expert for More Information regarding this					
16.3 Flight Operations						
16.3.1 Flight Operations A	ssumptions					
Number of Annual TGO						
- Default Settings Used:	lo					
- Flight Operations TIMs (Ti Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	6.8 : 0.25 ns): 0.25 (mins): 1.4 ins): 4					
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	0 4.97 10.45 6.14 2.04					
16.3.2 Flight Operations F	ormula(s)					
- Aircraft Emissions per Mode for LTOs per Year AEM _{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000						

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16.5 Aircraft Engine Test Cell

16.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	31

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

16.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

16.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

 $TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000$

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 T-38C Decrease Trim Test and Test Cell

- Activity Description: Starting in 2029, remove trim test and engine test cell for 45 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2029
- Activity End Date Indefinite: Yes End Month: N/A

End Year: N/A

- Activity Emissions:

Theory Emissi	0115.
Pollutant	Emissions Per Year (TONs)
VOC	-0.863478
SO _x	-0.211221
NO _x	-0.615725
СО	-10.967846
PM 10	-0.231950

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.086155
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-638.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.411379
SO _x	-0.106740
NO _x	-0.303903
СО	-5.428503
PM 10	-0.113576

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.452098
SO _x	-0.104481
NO _x	-0.311821
СО	-5.539343
PM 10	-0.118374

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.038783
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-322.6

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.047372
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-315.8

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test

Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each LTO	Source?		

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel V Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
1742 Auxiliany Dower Un	·	mula(
17.4.3 Auxiliary Power Un	II (AFU) FOI	riiruta(5)					
- Auxiliary Power Unit (APU) APU _{POL} = APU * OH * LTO *		er Year						
APU _{POL} : Auxiliary Power APU: Number of Auxiliary OH: Operation Hours for F LTO: Number of LTOs EF _{POL} : Emission Factor for 2000: Conversion Factor p	y Power Units Each LTO (hou r Pollutant (lb/	ur)	s per Pollu	tant (TONs	;)			
17.5 Aircraft Engine Test	Cell							
17.5.1 Aircraft Engine Tes	t Cell Assum	nptions	5					
- Engine Test Cell Total Number of Aircraft	Engines Test	ed Ann	ually: 9	0				
- Default Settings Used: Y	es							
- Annual Run-ups / Test Dura Annual Run-ups (Per Air Idle Duration (mins): Approach Duration (mins Intermediate Duration (m Military Duration (mins): After Burner Duration (n	craft Engine): s): ains):	0 (12 0 (8 (default) default) (default) default) default) default)					
17.5.2 Aircraft Engine Tes	t Cell Emissi	ion Fa	ctor(s)					
- See Aircraft & Engines Emis	ssion Factor(s	5)						
17.5.3 Aircraft Engine Tes	t Cell Formu	ıla(s)						
- Aircraft Engine Test Cell En TestCellPS _{POL} = (TD / 60) * (Fo					('ONs)			
TestCellPS _{POL} : Aircraft En TD: Test Duration (min) 60: Conversion Factor min	utes to hours	Emissi	ons per Po	llutant & P	ower Sett	ing (TONs))	

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCell = TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2030, add trim test and engine test cell for 9 T-7As.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.095127
SO _x	0.030979
NO _x	0.528623
СО	1.631989
PM 10	0.037111

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.033280
Pb	0.000000
NH ₃	0.000000
CO ₂ e	93.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.051916
SO _x	0.017034
NO _x	0.282994
СО	0.823374
PM 10	0.018925

Pollutant	Emissions Per Year (TONs)
VOC	0.043212
SO _x	0.013945
NO _x	0.245629
CO	0.808616

t <u>& APU) partj:</u>	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.016958
Pb	0.000000
NH ₃	0.000000
CO ₂ e	51.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.016322
Pb	0.000000
NH ₃	0.000000
CO ₂ e	42.1

Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations SHIGH Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4	PM 10 0.018186	
Aircraft & Engine Aircraft & Engine Aircraft & Engine Mircraft & Engine Model: F404-GE-102 Primary Function: Trainer Aircraft & After burn: Yes Number of Engines: 1 Mircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft & Engine a Surrogate? No Original Aircraft & Engines Emission Factor(s) Mircraft & Engine Emission Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 3. Flight Operations Mumber of Aircraft: 9 Number of Aircraft: 9 Number of Aircraft: 9 Number of Aircraft: 0 Number of Aircraft: 0 Number of Aircraft: 0 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 0.25 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 4.4 Taxi/Idle In [Infermediate] (mins): 4.4 Trim Test Idle (mins): 0 Approach [Approach] (mins): 4.97 Intermediate (mins): 4.97 Intermediate (mins): 4.97 Intermediate (mins): 6.14	.2 Aircraft & Engines	
Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE-102 Primary Function: Trainer Aircraft & After burn: Yes Number of Engines: 1 Vircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: 3.2.2 Aircraft & Engines Emission Factor(s) Vircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 3.3 Flight Operations 3.3 Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 9 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Aifter Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Taxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 6.14		
Aircraft Designation: T-7A Engine Model: F404-GE-102 Primary Function: Traine Aircraft has After burn: Yes Number of Engines: 1 Xircraft & Engine Surrogate Is Aircraft & Engine Surrogate? Is Aircraft & Engine Surrogate? No Original Aircraft Name: Original Legine Name: 32.2 Aircraft & Engines Emission Factor(s) Xircraft & Engine Emissions Factors (b/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. Bit String Surgate? 3.3 Flight Operations Sa.3 Flight Operations Assumptions 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Tight Operations TIMs (Time In Mode) 6.8 Takeoff [Aiter Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 frim Test Idle (mins): 4.4 Frim Test Idle (mins):	3.2.1 Aircraft & Engines Assumptions	
Engine Model: F404-GE-102 Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine a Surrogate Is Aircraft & Engine a Surrogate? Is Aircraft & Engine a Surrogate? No Original Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Proprietary Information. Solution: 8.3.1 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations (Journamet Context) 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMS (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 4.4 Trim Test Idle (mins): 4.4		
Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engine Emission Factors (Ib/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations Sature of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual LTOs (Couch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Tak/off [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 4.4 Trim Test Idle (mins): 6.4 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 6.14		
Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine a Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft & Engine a Surrogate? No Original Engine Name: 8.2.2 Aircraft & Engine Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations Number of Aircraft: 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.4 Trim Test Idle (mins): 0.45 Military (mins): 6.14		
Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations Sumber of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Tim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takcoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45		
Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 44 Taxi/Idle In [Idle] (mins): 44 Taxi/Idle In [Idle] (mins): 44 Mapproach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	Number of Engines: 1	
Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45	Aircraft & Engine Surrogate	
Original Engine Name: 18.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 18.3.1 Flight Operations 18.3.1 Flight Operations Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
 18.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 18.3 Flight Operations 18.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14 		
Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Flight Operations Number of Aircraft: 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3.1 Flight Operations Flight Operations Assumptions Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TCOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TCOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
engine's Emission Factors. 18.3 Flight Operations 18.3.1 Flight Operations Assumptions Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.7 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		nformation regarding this
 Image: Provide the system of the sy		normation regulating this
 83.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.7 Intermediate (mins): 10.45 Military (mins): 6.14 	9.3 Elight Operations	
Flight Operations 9 Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 4.4 Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 1 Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	o.o Tingit Operations	
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 5 Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 1 Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 1 Idle (mins): 0 Approach (mins): 4.4 Trim Test 1 Idle (mins): 10.45 Military (mins): 6.14	8.3.1 Flight Operations Assumptions Flight Operations	
Number of Annual Trim Test(s) per Aircraft:1Default Settings Used:NoFlight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins):6.8Takeoff [Military] (mins):0.25Takeoff [Military] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Trim Test4.4Trim Test0Idle (mins):4.4Intermediate (mins):10.45Military (mins):6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft:	
Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Taxi/Idle Out [Idle] (mins):6.8Takeoff [Military] (mins):0.25Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test0Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0 0
Takeoff [Military] (mins):0.25Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test0Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: 	0 0
Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim TestIdle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) 	0 0
Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test4.4Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 	0 0
Taxi/Idle In [Idle] (mins):4.4Trim Test Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 	0 0
Trim TestIdle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 	0 0
Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 	0 0
Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 	0 0
Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test 	0 0
Military (mins): 6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 	0 0
AfterBurn (mins): 2.04	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 	0 0
	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 	0 0

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18.5 Aircraft Engine Test Cell

18.5.1 Aircraft Engine Test Cell Assumptions

 Engine Test Cell Total Number of Aircraft Engines Tested Annually: 9

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)

Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

18.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

18.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C Decrease Trim Test and Test Cell

- Activity Description: Starting in 2030, remove trim test and engine test cell for 17 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.326203
SO _x	-0.079795
NO _x	-0.232607
CO	-4.143408
PM 10	-0.087626

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.032548
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-241.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.155410
SO _x	-0.040324
NO _x	-0.114808
СО	-2.050768
PM 10	-0.042906

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.170793
SO _x	-0.039470
NO _x	-0.117799
CO	-2.092641
PM 10	-0.044719

PM 2.5	-0.014651
Pb	0.000000
NH ₃	0.000000
CO_2e	-121.9

Pollutant

DI

Emissions Per Year (TONs)

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017896
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-119.3

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234

				1				
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234
19.3 Flight Operations								
19.3.1 Flight	Operations	Assumptio	ns					
Number o Number o	tions f Aircraft: f Annual LT(f Annual TG(f Annual Trir	Os (Touch-a	nd-Go) cyc			řt: 0 0 3		
- Default Setti	ngs Used:	No						
Takeoff [] Takeoff [/ Climb Ou Approach	tions TIMs (7 Out [Idle] (mi Military] (min After Burn] (n t [Intermedia [Approach] (In [Idle] (min	ns): s): nins): te] (mins): mins):	le)	12.8 0.2 0.9 3.8 6.4				
- Trim Test Idle (mins Approach Intermedi Military (AfterBurn	(mins): ate (mins): mins):	0 4.97 10.45 6.14 2.04						
19.3.2 Flight	Operations	Formula(s)					
- Aircraft Em AEM _{POL} = (TI				D / 2000				
TIM: Tim 60: Conve FC: Fuel 1000: Con EF: Emiss NE: Num LTO: Num	Aircraft Emiss e in Mode (mi ersion Factor n Flow Rate (lb/ oversion Factor sion Factor (lb/ ber of Engines nber of Landir oversion Factor	n) ninutes to hou nr) r pounds to 1 (1000lb fuel) ng and Take-0	urs 000pounds off Cycles (ft)			
- Aircraft Em AE _{LTO} = AEM		-		+ AEM _{CLIM}	BOUT + AEM_T	AKEOFF		

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19.4 Auxiliary Power Unit (APU)

19.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
r	LTO			

19.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

19.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

19.5 Aircraft Engine Test Cell

19.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	34

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

19.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

19.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

20. Personnel

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Add 43 personnel

- Activity Description:

Addition of 43 personnel during the T-7A and T-38C transition period. Conservatively assumed all personnel commute daily.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2029

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.190336
SO _x	0.001295
NO _x	0.163202
СО	2.164712
PM 10	0.003741

Pollutant	Total Emissions (TONs)
PM 2.5	0.003415
Pb	0.000000
NH ₃	0.011726
CO ₂ e	186.2

20.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	43
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

20.3 Personnel On Road Vehicle Mixture

- On Road Vehic	le Mixture (%)
-----------------	----------------

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

20.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

			(grain)						
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

20.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{Total}: Total Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Personnel On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21. Personnel

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove 74 personnel

- Activity Description:

Net decrease of 74 personnel following T-7A arrival and T-38C withdrawal. Conservatively assumed all personnel commute daily.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.163778
SO _x	-0.001114
NO _x	-0.140430
СО	-1.862659
PM 10	-0.003219

21.2	Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	74
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002938
Pb	0.000000
NH ₃	-0.010089
CO ₂ e	-160.2

Support Contractor Personnel:5 DayAir National Guard (ANG) Personnel:4 DayReserve Personnel:4 Day

5 Days Per Week (default) 4 Days Per Week (default) 4 Days Per Month (default)

21.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

21.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

21.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_c: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (33,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 3.65 acres (159,000 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 300 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 33,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 33,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 2.75 acres (120,000 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

The analysis assumes the following: (1) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; (2) for special vehicles and non-road combustion equipment needed to support T-7A operations/facilities, their operation/emissions would be equally offset by eliminating or reusing vehicles and non-road equipment that were supporting T-38C operations; and (3) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Activity Start Date

Start Month:	7
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.951152
SO _x	0.010236
NO _x	3.131076
СО	4.538396

Pollutant	Total Emissions (TONs)
PM 2.5	0.113029
Pb	0.000000
NH ₃	0.002861
CO ₂ e	989.0

PM 10		6.458026					
22.1 Site Gradi	ing Phase						
22.1.1 Site Gra	ding Phas	e Timeline A	ssumptions				
- Phase Start Dat Start Month Start Quarte Start Year:	: 7						
- Phase Duration Number of M Number of D	Aonth: 4						
22.1.2 Site Gra	ding Phas	e Assumptio	ns				
	to be Grad Iaterial to			159000 0 0			
- Site Grading De Default Setti	ngs Used:	-	Yes				
Average Day	v(s) worked	per week:	5 (default)				
Average Day	xhaust (def	ault)	× ,				
	xhaust (def	-	× ,		Number O Equipmen		urs Per Day
- Construction E	<u>xhaust (</u> def Eq	ault)	× ,		Number O Equipmen 1		
	xhaust (def Eq	'ault) Juipment Nam	× ,		Equipmen		urs Per Day
- Construction E Graders Compos Other Constructi Rubber Tired Do	xhaust (def Eq site ion Equipmo ozers Compo	Yault) Juipment Nam ent Composite osite	× ,		Equipmen 1		8
- Construction E Graders Compos Other Constructi	xhaust (def Eq site ion Equipmo ozers Compo	Yault) Juipment Nam ent Composite osite	× ,		Equipmen 1 1		8 8
Construction Est Graders Compos Other Constructi Rubber Tired Do Tractors/Loaders Vehicle Exhaus Average Hau Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t aling Truck aling Truck	Yault) Juipment Nam ent Composite osite Composite Composite	ie 	20 (defa ile): 20 (defa	Equipmen		8 8 8 8
Construction E Graders Compos Other Constructi Rubber Tired Do Tractors/Loaders - Vehicle Exhaus Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t iling Truck iling Truck iling Truck	Yault) Juipment Name ent Composite osite Composite Composite Composite Capacity (yd Round Trip (Lixture (%)	³): Commute (m	ile): 20 (defa	Equipmen 1 1 2 uult) uult)	It	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t aling Truck aling Truck	Yault) Juipment Nam ent Composite osite Composite Composite	ie 		Equipmen	t	8 8 8 8
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau POVs Worker Trips	xhaust (def Eq site ton Equipmo ozers Compos/Backhoes t lling Truck lling Truck t Vehicle M LDGV 0	Yault) Juipment Name ent Composite osite Composite Composite Capacity (yd c Round Trip of Lixture (%)	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	It	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau POVs Worker Trips	xhaust (def Eq Site fon Equipmo ozers Compo s/Backhoes t ling Truck ling Truck ling Truck LDGV 0	Fault) Juipment Name ent Composite C	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	t	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau Average Hau Average Would the Second Se	xhaust (def Eq in Equipmo ozers Compo s/Backhoes t iling Truck iling Truck t Vehicle M LDGV 0 rker Round /ehicle Mix LDGV	Fault) Juipment Name ent Composite composite Compos	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	t	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau Average Hau Average Wo Worker Trips Average Wo Worker Trips V	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t lling Truck aling Truck t Vehicle M LDGV 0 rker Round Vehicle Mix	Fault) Juipment Name ent Composite cosite Comp	a a a a a b a a b a c o mute (m b c o mute (m c o ute (mile):	ile): 20 (defa LDDV 0 20 (default)	Equipmen 1 1 2 ult) ult) LDDT 0	t	8 8 8 7 7

22.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e

Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89					
Other Construction Equipment Composite													
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60					
Rubber Tired Dozen	Rubber Tired Dozers Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45					
Tractors/Loaders/Backhoes Composite													
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872					

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{WT}: \mbox{ Worker Trips Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Worker Trips On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

22.2 Trenching/Excavating Phase

22.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 2 Number of Days: 0

22.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	900
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite													
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89					
Other Construction	Other Construction Equipment Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60					
Rubber Tired Dozen	rs Composi	te											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45					
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite												
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e					
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872					

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

22.3 Building Construction Phase

22.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration

Number of Month:18Number of Days:0

22.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	33000
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite	Cranes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			

Generator Sets Con	Generator Sets Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

22.4 Architectural Coatings Phase

22.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 6 Start Quarter: 1 Start Year: 2027
- Phase Duration Number of Month: 1 Number of Days: 0

22.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 33000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trij	ps Vehicle Mixt	ture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e	
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428	
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572	
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241	
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132	
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757	
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593	
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696	

22.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22.5 Paving Phase

22.5.1 Paving Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 7
Start Quarter: 1
```

Start	Year:	2027

- Phase Duration Number of Month: 2 Number of Days: 0

22.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 120000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	2	6
Rollers Composite	1	7

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozer	s Composit	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Ba	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
 VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (12,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 0.75 acres (32,500 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 500 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new UMT facility would total approximately 12,000 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 312,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways and roadways would occur on an area totaling approximately 0.2 acres (8,750 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

muennite:	raise
End Month:	8
End Month:	2027

- Activity Emissions: Pollutant Total Emissions (TONs)

Pollutant Total Emissions (TONs)

VOC	0.474579
SO _x	0.006568
NO _x	1.680257
CO	2.695038
PM 10	1.382261

PM 2.5	0.059107
Pb	0.000000
NH ₃	0.001602
CO ₂ e	636.1

23.1 Site Grading Phase

23.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 4 Number of Days: 0

23.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	32500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default) Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.1.3 Site Grading Phase Emission Factor(s)

Graders Composite	Graders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozers Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.2 Trenching/Excavating Phase

23.2.1 Trenching / Excavating Phase Timeline Assumptions

Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 2 Number of Days: 0

23.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	1500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

T T T T T T	umber Of quipment	Hours Per Day
--------------------	----------------------	---------------

Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	's Composi	te								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)

2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.3 Building Construction Phase

1

23.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month:

Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 18 Number of Days: 0

23.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Office or Industrial
12000
15
N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

23.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.4 Architectural Coatings Phase

23.4.1 Architectural Coatings Phase Timeline Assumptions

6
1
2027

- Phase Duration Number of Month: 1 Number of Days: 0

23.4.2 Architectural Coatings Phase Assumptions

- General Arc Building	hitectural Co Category:	atings Inform Non-Resid					
Total Squ	are Footage (ft ²): 12000					
Number o	of Units:	N/A					
- Architectural Coatings Default Settings							
Default S	ettings Used:	-	Yes				
Average I	Day(s) worked	l per week:	5 (default)				
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)							
Average	worker Koun	u Trip Comm	lute (mne):	20 (default)			
- Worker Trips Vehicle Mixture (%)							
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	

MC

DOLL	5 0.00	5 0.00	0	0	0	0	0
POVs	50.00	50.00	0	0	0	0	0

23.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

23.5 Paving Phase

23.5.1 Paving Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 7
Start Quarter: 1
Start Year: 2027
```

- Phase Duration Number of Month: 2 Number of Days: 0

23.5.2 Paving Phase Assumptions

- General Paving Information

Paving Area (ft²): 8750

- Paving Default Settings

```
Default Settings Used:YesAverage Day(s) worked per week:5 (default)
```

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction	Equipment	t Composit	e							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	Rubber Tired Dozers Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	СО	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132

LDDT	000.233	000.004	000.371	004.384	000.007	000.006	000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150	000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023	000.054	00393.696

23.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from November 2025 through November 2026.

Trenching to extend site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 1 month.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in December 2025 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in November 2026 and last approximately 1 month.

Paving for approach pavements would occur on an area totaling approximately 300 square feet. Paving would begin November 2026 and last approximately 1 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.558724
SO _x	0.005128
NO _x	1.550784
CO	2.357436
PM 10	0.056807

Pollutant	Total Emissions (TONs)
PM 2.5	0.053680
Pb	0.000000
NH ₃	0.001724
CO ₂ e	492.5

24.1 Trenching/Excavating Phase

24.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 1 Number of Days: 0

24.1.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	300
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953

HDGV	001.373	000.015	002.807	024.705	000.026	000.023	000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006	000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007	000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334	000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024	000.050	00392.901

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

24.2 Building Construction Phase

24.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 12 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 12 Number of Days: 0

24.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):24111Height of Building (ft):20Number of Units:N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

LDGV LDGT HDGV LDDV LDDT HDDV MC

POV_{c} 50.00 50.00 0 0 0 0	
POVs 50.00 50.00 0 0 0 0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

venuer rrips veniere mixture (70)									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	0	0	0	0	0	100.00	0		

24.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77	
Forklifts Composite	:								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449	
Generator Sets Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057	
Tractors/Loaders/Ba	ackhoes Co	mposite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	
Welders Composite	Welders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

24.3 Architectural Coatings Phase

24.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	11
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 1 Number of Days: 0

24.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24.4 Paving Phase

24.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

24.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 300
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

24.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Aircraft Shelters

- Activity Description:

Construction of 46 aircraft shelters (sunshades) would occur from November 2025 through November 2026.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of approximately 68 sunshades totaling approximately 180,000 square feet. Demolition would begin in November 2025 and last approximately 6 months.

Construction would include installation of 46 sunshades totaling approximately 210,500 square feet. The height of all sunshades was assumed to be 15 feet. Construction would begin in May 2026 and last approximately 7 months.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.264204
SO _x	0.005243
NO _x	1.652907
СО	2.202898

Pollutant	Total Emissions (TONs)
PM 2.5	0.055859
Pb	0.000000
NH ₃	0.003513
CO ₂ e	525.3

PM 10	0.623968		
25.1 Demolition	Phase		
25.1.1 Demoliti	on Phase Timeline Assumptions		
- Phase Start Date Start Month: Start Quarter Start Year:	11		
- Phase Duration Number of M Number of D			
25.1.2 Demoliti	on Phase Assumptions		
	tion Information ling to be demolished (ft ²): 180000 lding to be demolished (ft): 15		
- Default Settings	Used: Yes		
- Average Day(s)	worked per week: 5 (default)		
- Construction Ex			
	Equipment Name	Number Of Equipment	Hours Per Day
Concrete/Industr	al Saws Composite	1	8
	•	1	
Rubber Tired Do	zers Composite	1	1

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539
Rubber Tired Dozers Composite								

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
 VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
 0.002205: Conversion Factor grams to pounds
 EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25.2 Building Construction Phase

25.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:	5
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 7 Number of Days: 0

25.2.2 Building Construction Phase Assumptions

- General Building Construction Information

uon mation
Office or Industrial
210500
15
N/A

- Building Construction Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.2.3 Building Construction Phase Emission Factor(s)

Constituction Exhau		1 400015 (1	<u>o/nour) (ue</u>							
Cranes Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Com	posite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite	Welders Composite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

· emiere L	inina abt et i	or mer int		1 1 actors (g	5	/			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from July 2026 through August 2028.

Construction of the Egress Shop addition would total approximately 4,000 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in July 2026 and last approximately 25 months.

Architectural coatings would be applied to the addition, totaling 4,000 square feet. Architectural coating application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2026

- Activity End Date

Indefinite:FalseEnd Month:8End Month:2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.289900
SO _x	0.005043
NO _x	1.163443
СО	2.124393
PM 10	0.036831

Pollutant	Total Emissions (TONs)
PM 2.5	0.036783
Pb	0.000000
NH ₃	0.001413
CO ₂ e	485.3

26.1 Building Construction Phase

26.1.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 25 Number of Days: 0

26.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	4000
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

26.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e

Emission Factors 0.033	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
------------------------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

26.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VT}: \ Vender \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

26.2 Architectural Coatings Phase

26.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	8
Start Quarter:	1
Start Year:	2028

- Phase Duration Number of Month: 1 Number of Days: 0

26.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information					
Building Category:	Non-Residential				
Total Square Footage ($(ft^2):$ 4000				
Number of Units:	N/A				

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.2.3 Architectural Coatings Phase Emission Factor(s)

110	продінія		~ (8)					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

26.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from November 2025 through November 2026.

Construction of the deflectors would total approximately 48,000 feet. The height of the deflectors was assumed to be 12 feet. Construction would begin in November 2025 and last approximately 13 months.

- Activity Start Date

Start Month:11Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.265030
SO _x	0.004879
NO _x	1.502261
CO	2.241723
PM 10	0.051185

Pollutant	Total Emissions (TONs)
PM 2.5	0.051022
Pb	0.000000
NH ₃	0.001713
CO ₂ e	469.5

27.1 Building Construction Phase

27.1.1 Building Construction Phase Timeline Assumptions

- Phase Start I

Start Month:	11
Start Quarter:	1
Start Year:	2025

- Phase Duration

Number of Month: 13 Number of Days: 0

27.1.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 48000 Height of Building (ft): 12 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exh	aust Vehicle N	/lixture (%)					
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

27.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Com	posite					•		
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

27.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Renovate Building 452 (Hangar 3)

- Activity Description:

Renovation of Hangar 452 would occur from August 2024 through February 2026.

It was assumed 25 percent of the total square footage of the facility (21,024 square feet * 0.25 = 5,256 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 19 months.

It was assumed architectural coatings would be required for the entire facility (21,024 square feet) following the renovations. Architectural coating application would begin in February 2026 and last approximately 1 month.

- Activity Start Date

Start Month:	8
Start Month:	2024

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.436750
SO _x	0.003838
NO _x	0.965344
СО	1.619187
PM 10	0.032164

Pollutant	Total Emissions (TONs)
PM 2.5	0.032123
Pb	0.000000
NH ₃	0.001095
CO ₂ e	369.5

28.1 Building Construction Phase

28.1.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	8
Start Quarter:	1
Start Year:	2024

- Phase Duration

Number of Month:19Number of Days:0

28.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	5256
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78		
Forklifts Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451		
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		

Emission Factors 0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875
-------------------------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

28.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VT}: \ Vender \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

28.2 Architectural Coatings Phase

28.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	2
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

28.2.2 Architectural Coatings Phase Assumptions

- General Architectural Co	oatings Information
Building Category:	Non-Residential
Total Square Footage	(ft ²): 21024
Number of Units:	N/A

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Architectural Coatings Phase Emission Factor(s)

110	продінія		~ (8)					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

28.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

29. Construction / Demolition

29.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Wash Rack Renovation (Building 454)

- Activity Description:

Renovation of Building 454 to relocate the wash rack would occur from August 2024 through September 2025.

It was assumed 25 percent of the total square footage of the facility (13,124 square feet * 0.25 = 3,281 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 14 months.

It was assumed architectural coatings would be required for the entire facility (13,124 square feet) following the renovations. Architectural coatings application would begin in September 2025 and last approximately 1 month.

- Activity Start Date

Start Month:8Start Month:2024

- Activity End Date

Indefinite:	False
End Month:	9
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.294183
SO _x	0.002825
NO _x	0.710509
СО	1.191602
PM 10	0.023672

Pollutant	Total Emissions (TONs)
PM 2.5	0.023644
Pb	0.000000
NH ₃	0.000796
CO ₂ e	271.9

29.1 Building Construction Phase

29.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month:

Start Month:8Start Quarter:1Start Year:2024

- Phase Duration Number of Month: 14 Number of Days: 0

29.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):3281Height of Building (ft):15Number of Units:N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6

Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

29.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite	Cranes Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78					
Forklifts Composite													
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451					
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e					
Emission Factors	0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875					

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

29.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

29.2 Architectural Coatings Phase

29.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 9 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 1 Number of Days: 0

29.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 13124 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

29.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

29.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

30. Construction / Demolition

30.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm would occur from August 2024 through December 2024.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in August 2024 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date Start Month: 8 Start Month: 2024

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2024

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.103650
SO _x	0.002153
NO _x	0.497117
CO	0.837771

Pollutant	Total Emissions (TONs)
PM 2.5	0.018234
Pb	0.000000
NH ₃	0.000275
CO ₂ e	203.1

		0.266939					
30.1 Trenc	hing/Excavati	ng Phase					
30.1.1 Tre	nching / Excav	ating Phase T	imeline A	ssumptions			
- Phase Star Start M Start Qu Start Ye	onth: 8 uarter: 1						
	ation c of Month: 5 c of Days: 0						
30.1.2 Tre	nching / Excav	ating Phase A	ssumption	18			
Area of Amount	renching/Excava Site to be Trenc t of Material to l t of Material to l	hed/Excavated be Hauled On-S	l (ft ²): Site (yd ³):	5000 0 0			
Default	Default Settings Settings Used: e Day(s) worked	•	Yes 5 (default)				
- Constructi	on Exhaust (def	ault) uipment Name			Number C)f Ua	ours Per Day
	Ľq	uipment ivame			Equipmer		Juis i ei Day
					2		
Excavators	Composite				۷.		8
Other Gene	ral Industrial Equ		site		1		8
Other Gene			site				
Other Gene Tractors/Lo - Vehicle Ex Average Average	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck haust Vehicle M	Composite Capacity (yd ³) Round Trip C): 'ommute (n	, , , , , , , , , , , , , , , , , , ,	1 1 ult) ult)		8 8
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck	Composite Capacity (yd ³) Round Trip C):		1 1 ult)	HDDV	8
Other Gene Tractors/Lo - Vehicle Ex Average Average	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck haust Vehicle M	Composite Capacity (yd ³) Round Trip C lixture (%)): 'ommute (n	nile): 20 (defa	1 1 ult) ult)	HDDV 100.00	8
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr	ral Industrial Equ baders/Backhoes (haust e Hauling Truck e Hauling Truck haust Vehicle M LDGV 0	Composite Capacity (yd ³) Round Trip C lixture (%) LDGT 0): 'ommute (n <u>HDGV</u> 0	nile): 20 (defa	l l uult) LDDT		8 8 MC
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr Average	ral Industrial Equ baders/Backhoes Haust Hauling Truck Hauling Truck haust Vehicle M LDGV 0	Composite Capacity (yd ³) Round Trip C LDGT 0 I Trip Commut): fommute (n HDGV 0 te (mile):	nile): 20 (defa	l l uult) LDDT		8 8 MC
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr Average	ral Industrial Equ baders/Backhoes (haust Hauling Truck Hauling Truck haust Vehicle M LDGV 0 'ips Worker Round	Composite Capacity (yd ³) Round Trip C LDGT 0 I Trip Commut): 'ommute (n <u>HDGV</u> 0	nile): 20 (defa	l l uult) LDDT		8 8 MC

30.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

· · · · · · · · · · · · · · · · · · ·		
VOC SO _x NO _x CO PM 10 PM 2.5 Pb	NH ₃	CO ₂ e

LDGV	000.597	000.007	000.639	005.101	000.011	000.009	000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010	000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023	000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006	000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007	000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334	000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024	 000.050	00392.901

30.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

31. Construction / Demolition

31.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Renovation of the Squadron Operations Buildings (Buildings 216 and 234) would occur from July 2025 through August 2028.

It was assumed 25 percent of the total square footage of Building 216 (26,603 square feet) and Building 234 (13,686 square feet) (40,289 total square feet * 0.25 = 10,072.25 square feet) would be construction to equate the renovations. Renovations would begin in July 2025 and last approximately 34 months.

It was assumed architectural coatings would be required for the entire building area (40,289 square feet) following the renovations. Architectural coatings application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.798913
SO _x	0.006868
NO _x	1.585700
СО	2.891207
PM 10	0.050214

Pollutant	Total Emissions (TONs)
PM 2.5	0.050138
Pb	0.000000
NH ₃	0.001947
CO ₂ e	661.2

31.1 Building Construction Phase

31.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 34 Number of Days: 0

31.1.2 Building Construction Phase Assumptions

- General Building Construction Information					
Building Category:	Office or Industrial				
Area of Building (ft ²):	10072.25				
Height of Building (ft):	15				
Number of Units:	N/A				

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

31.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite

Cranes composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e

Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

31.2 Architectural Coatings Phase

31.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2028

- Phase Duration Number of Month: 1 Number of Days: 0

31.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 40289 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

31.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man * day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)

800: Conversion Factor square feet to man days ($1 \text{ ft}^2 / 1 \text{ man * day}$)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

32. Construction / Demolition

32.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Aircraft improvements would occur from July 2025 through December 2025.

Airfield improvements would occur on an area totaling approximately 720,000 square feet. Improvements would begin in July 2025 and last approximately 6 months.

- Activity Start Date

Start Month:	7
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.157002
SO _x	0.001830
NO _x	0.775266
CO	1.040129
PM 10	0.041883

Pollutant	Total Emissions (TONs)
PM 2.5	0.041779
Pb	0.000000
NH ₃	0.000618
CO ₂ e	182.3

32.1 Paving Phase

32.1.1 Paving Phase Timeline Assumptions

- Phase Start Date
 - Start Month:7Start Quarter:1Start Year:2025
- Phase Duration Number of Month: 6 Number of Days: 0

32.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 720000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8
Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

32.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

32.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1/HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of a trim pad would occur from August 2025 through February 2026.

Excavation of existing pavement would occur on an area totaling approximately 20,523 square feet. Excavation would begin in August 2025 and last approximately 2 months.

Pavement for the new trim pad would be required for an area totaling approximately 20,523 square feet. Paving would begin in October 2025 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date Start Month: 8

Start Month: 2025

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.113845
SO _x	0.001880
NO _x	0.568786
CO	0.932186
PM 10	0.427134

Pollutant	Total Emissions (TONs)
PM 2.5	0.024167
Pb	0.000000
NH ₃	0.000596
CO ₂ e	179.1

33.1 Trenching/Excavating Phase

33.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1

Start Quarter:1Start Year:2025

- Phase Duration

Number of Month: 2 Number of Days: 0

33.1.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	20253
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Tri	ps Vehicle Mix	xture (%)					
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs) 20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day) ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33.2 Paving Phase

33.2.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:	10
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 5 Number of Days: 0

33.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 20253
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

34. Heating

34.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating for New Facilities

- Activity Description:

Heating for new facilities would begin following construction. For the purposes of this analysis, heating was assumed to required starting in January 2029. Heating would be required for the following facilities: GBTS Facility - 33,000 square feet UMT Facility - 12,000 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 4,000 square feet

Total ares to be heated - 73,111 square feet

- Activity Start Date Start Month: 1 Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.014227
SO _x	0.001552
NO _x	0.258674
CO	0.217286
PM 10	0.019659

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.019659
Pb	0.000000
NH ₃	0.000000
CO ₂ e	311.4

34.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²):

73111 Natural Gas Industrial (10 - 250 MMBtu/hr) 0.00105 0.0743

- Default Settings Used: Yes

- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

34.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

34.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL}=FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

c. Project Number/s (if applicable):

d. Projected Action Start Date: 8 / 2024

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2024						
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY	AREA					
VOC	0.205	250	No			
NOx	1.005	250	No			
СО	1.689	250	No			
SOx	0.004	250	No			
PM 10	0.284	250	No			
PM 2.5	0.035	250	No			
Pb	0.000	25	No			
NH3	0.001	250	No			
CO2e	397.5					

2025

2025								
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR						
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)					
NOT IN A REGULATORY	NOT IN A REGULATORY AREA							
VOC	1.069	250	No					
NOx	4.712	250	No					
СО	7.091	250	No					
SOx	0.017	250	No					
PM 10	8.445	250	No					
PM 2.5	0.182	250	No					
Pb	0.000	25	No					
NH3	0.004	250	No					
CO2e	1603.9							

2026

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY AREA						
VOC	1.804	250	No			

NOx	7.095	250	No
CO	10.840	250	No
SOx	0.024	250	No
PM 10	0.620	250	No
PM 2.5	0.240	250	No
Pb	0.000	25	No
NH3	0.010	250	No
CO2e	2363.7		

2027

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	1.009	250	No
NOx	2.459	250	No
CO	4.117	250	No
SOx	0.009	250	No
PM 10	0.086	250	No
PM 2.5	0.086	250	No
Pb	0.000	25	No
NH3	0.003	250	No
CO2e	886.1		

2028

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	27.562	250	No
NOx	67.791	250	No
CO	-181.515	250	No
SOx	2.782	250	No
PM 10	-6.070	250	No
PM 2.5	-4.137	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	9688.1		

2029

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	55.137	250	No
NOx	164.465	250	No
CO	-589.356	250	No
SOx	5.525	250	No
PM 10	-18.458	250	No
PM 2.5	-12.683	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	19962.7		

	2030		
Pollutant	lutant Action Emissions INSIGNIFICANCE INDICATOR		ICE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	58.978	250	No
NOx	191.576	250	No
СО	-759.059	250	No
SOx	5.836	250	No
PM 10	-23.274	250	No
PM 2.5	-16.031	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	21355.0		

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICAN	CE INDICATOR
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	58.978	250	No
NOx	191.576	250	No
CO	-759.059	250	No
SOx	5.836	250	No
PM 10	-23.274	250	No
PM 2.5	-16.031	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	21355.0		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 8 / 2024

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activ	vity List:	
	Activity Type	Activity Title
2.	Aircraft	2028 Add T-7As and LTOs
3.	Aircraft	2028 Add T-7A TGOs
4.	Aircraft	2028 Remove T-38C and LTOs
5.	Aircraft	2028 Remove T-38C TGOs
6.	Aircraft	2029 Add T-7As and LTOs
7.	Aircraft	2029 Add T-7A TGOs
8.	Aircraft	2029 Remove T-38C and LTOs
9.	Aircraft	2029 Remove T-38C TGOs
10.	Aircraft	2030 Add T-7As and LTOs
11.	Aircraft	2030 Add T-7A TGOs
12.	Aircraft	2030 Remove T-38C and LTOs
13.	Aircraft	2030 Remove T-38C TGOs
14.	Aircraft	2028 T-7A Increase Trim Test and Test Cell
15.	Aircraft	2028 T-38C Decrease Trim Test and Test Cell
16.	Aircraft	2029 T-7A Increase Trim Test and Test Cell
17.	Aircraft	2029 T-38C Decrease Trim Test and Test Cell
18.	Aircraft	2030 T-7A Increase Trim Test and Test Cell
19.	Aircraft	2030 T-38C Decrease Trim Test and Test Cell
20.	Personnel	Add 43 personnel
21.	Personnel	Remove 74 personnel
22.	Construction / Demolition	MILCON: Construct GBTS Facility
23.	Construction / Demolition	MILCON: Construct UMT Facility
24.	Construction / Demolition	MILCON: Construct Hush House
25.	Construction / Demolition	MILCON: Construct Aircraft Shelters
26.	Construction / Demolition	MILCON: Addition to Egress Shop
27.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
28.	Construction / Demolition	FSRM: Renovate Building 452 (Hangar 3)
29.	Construction / Demolition	FSRM: Wash Rack Renovation (Building 454)
30.	Construction / Demolition	FSRM: Antenna Farm
31.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
32.	Construction / Demolition	FSRM: Airfield Improvements
33.	Construction / Demolition	FSRM: Trim Pad
34.	Heating	Heating for New Facilities

- Activity List:

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7As and LTOs

- Activity Description:

Starting in 2028, add 21 T-7As and increase LTOs by 6,379.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	43.845373
SO _x	2.016759
NO _x	20.514886
СО	88.984504
PM 10	0.537933

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.477982
Pb	0.000000
NH ₃	0.000000
CO ₂ e	6094.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	43.845373
SO _x	2.016759
NO _x	20.514886
CO	88.984504
PM 10	0.537933

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.477982
Pb	0.000000
NH ₃	0.000000
CO ₂ e	6094.2

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer

Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTC Number of Annual TGC Number of Annual Trir	Os (Touch-and-Go		21 6379 0 0
- Default Settings Used:	No		
- Flight Operations TIMs (1	Time In Mode)		
Taxi/Idle Out [Idle] (mi	ins):	8.475	
Takeoff [Military] (min	s):	0.73	
Takeoff [After Burn] (n	nins):	0.01	
Climb Out [Intermedia	te] (mins):	0.42	
Approach [Approach] (4.03	
Taxi/Idle In [Idle] (min	s):	8.475	
- Trim Test			
Idle (mins):	12		
Approach (mins):	27		
Intermediate (mins):	9		
Military (mins):	9		

2.3.2 Flight Operations Formula(s)

AfterBurn (mins):

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

3

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

		1 40001 (10	,)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
-	Flow							

4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4
----------	-------	-------	-------	-------	-------	--------	--------	-------

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7A TGOs
- Activity Description: Starting in 2028, increase T-7A TGOs by 14,034.
- Activity Start Date Start Month: 1 Start Year: 2028
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	6.627546
SO _x	3.519206
NO _x	50.175959
СО	7.322293
PM 10	0.378546

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.320309
Pb	0.000000
NH ₃	0.000000
CO ₂ e	10716.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	6.627546	PM 2.5	0.320309
SO _x	3.519206	Pb	0.000000
NO _x	50.175959	NH ₃	0.000000
CO	7.322293	CO ₂ e	10716.0
PM 10	0.378546		

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

Number of Aircraft:	21
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	14034
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

-

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power	Unit (APU) (default)
-------------------	-----------	-------------

 ber of APU Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 Remove T-38C and LTOs

- Activity Description:

Starting in 2028, remove 23 T-38Cs and decrease LTOs by 5,889.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
СО	-226.520932
PM 10	-5.555029

Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
СО	-226.520932
PM 10	-5.555029

Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes

Number of Engines:

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

2

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	5889
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60)^* (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 Remove T-38C TGOs

- Activity Description:

Starting in 2028, decrease T-38C TGOs by 12,956.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-2.201160
SO _x	-0.847209
NO _x	-0.554249
СО	-51.521407
PM 10	-1.417294

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.546331
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-2560.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-2.201160	PM 2.5	-0.546331
SO _x	-0.847209	Pb	0.000000
NO _x	-0.554249	NH ₃	0.000000

СО	-51.521407
PM 10	-1.417294

CO ₂ e	-2560.6

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	8							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:			
- Default Settings Used:	No		
- Flight Operations TIMs (Ti Taxi/Idle Out [Idle] (min Takeoff [Military] (mins Takeoff [After Burn] (m Climb Out [Intermediate Approach [Approach] (n Taxi/Idle In [Idle] (mins)	ns):): ins): e] (mins): nins):	0 0 3.56 0 0	
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins):	12 27 9 9		

AfterBurn (mins):

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

3

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesNA: Number of AircraftNTT: Number of Trim Test2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Add T-7As and LTOs

- Activity Description:

Starting in 2029, add 31 T-7As and increase LTOs by 9,417.

- Activity Start Date Start Month: 1

Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	64.726741				
SO _x	2.977240				
NO _x	30.285105				
CO	131.363392				
PM 10	0.794124				

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.705622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	8996.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	64.726741	PM 2.5	0.705622
SO _x	2.977240	Pb	0.000000
NO _x	30.285105	NH ₃	0.000000
CO	131.363392	CO ₂ e	8996.6
PM 10	0.794124		

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	31
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	9417
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (10/117)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Add T-7A TGOs
- Activity Description: Starting in 2029, increase T-7A TGOs by 20,717.
- Activity Start Date

Start Month:1Start Year:2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	9.783588	Р	M 2.5	0.472840
SO _x	5.195054	P	'b	0.000000
NO _x	74.069783	N	JH3	0.000000
СО	10.809174	C	CO ₂ e	15818.9
PM 10	0.558811			

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	9.783588	PM 2.5	0.472840

SO _x	5.195054
NO _x	74.069783
СО	10.809174
PM 10	0.558811

Pb	0.000000
NH ₃	0.000000
CO ₂ e	15818.9

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		31
Number of Annual LT	Os (Landing and Take-off) cycles for all Aircraft:	20717
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
-------------	--

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Remove T-38C and LTOs

- Activity Description:

Starting in 2029, remove 45 T-38Cs and decrease LTOs by 11,521.

- Activity Start Date

Start Month: 1 Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-41.486675
SO _x	-3.666342
NO _x	-7.547858
СО	-443.156335
PM 10	-10.867632

Pollutant	Emissions Per Year (TONs)
PM 2.5	-8.687378
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-9313.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-41.486675	PM 2.5	-8.687378
SO _x	-3.666342	Pb	0.000000
NO _x	-7.547858	NH ₃	0.000000
CO	-443.156335	CO ₂ e	-9313.3
PM 10	-10.867632		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234

Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		45
Number of Annual L	Os (Landing and Take-off) cycles for all Aircraft:	11521
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs)

AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----------------	----	-------	--------	-------------------

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Remove T-38C TGOs
- Activity Description: Starting in 2029, decrease T-38C TGOs by 25,346.
- Activity Start Date

Start Month:	1
Start Year:	2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant Emissions Per Year (TON		
VOC	-4.306160	
SO _x	-1.657407	
NO _x	-1.084285	
СО	-100.792034	
PM 10	-2.772672	

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.068795
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-5009.4

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-4.306160	PM 2.5	-1.068795
SO _x	-1.657407	Pb	0.000000
NO _x	-1.084285	NH ₃	0.000000
СО	-100.792034	CO ₂ e	-5009.4
PM 10	-2.772672		

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
0	

- Aircraft & Engine Surrogate	
Is Aircraft & Engine a Surrogate?	No
Original Aircraft Name:	
Original Engine Name:	

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

The end of the states of the s								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	25346
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

	<i>c)</i> =====		·)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7As and LTOs
- Activity Description: Starting in 2030, add 9 T-7As and increase LTOs by 2,734.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	18.791856
SO _x	0.864370
NO _x	8.792553
СО	38.138209
PM 10	0.230555

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.204860
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2612.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	18.791856	PM 2.5	0.204860
SO _x	0.864370	Pb	0.000000
NO _x	8.792553	NH ₃	0.000000
СО	38.138209	CO ₂ e	2612.0
PM 10	0.230555		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	2734
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475
Takeoff [Military] (mins): Takeoff [After Burn] (mins): Climb Out [Intermediate] (mins): Approach [Approach] (mins):	0.73 0.01 0.42 4.03

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)	
--	--------	--

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Add T-7A TGOs
- Activity Description: Starting in 2030, increase T-7A TGOs by 6,015.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.840579
SO _x	1.508339
NO _x	21.505515

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137285
Pb	0.000000
NH ₃	0.000000

СО	3.138349
PM 10	0.162246

CO ₂ e	4592.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	2.840579
SO _x	1.508339
NO _x	21.505515
CO	3.138349
PM 10	0.162246

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137285
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4592.9

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

e- wie ee Engline	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	6015
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
Climb Out [Intermediate] (mins): Approach [Approach] (mins):	

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C and LTOs

- Activity Description: Starting in 2030, remove 17 T-38Cs and decrease LTOs by 4,353.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-15.674985
SO _x	-1.385260
NO _x	-2.851821
СО	-167.438549
PM 10	-4.106137

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.282368
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3518.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	-15.674985		PM 2.5	-3.282368
SO _x	-1.385260		Pb	0.000000
NO _x	-2.851821		NH ₃	0.000000
CO	-167.438549		CO ₂ e	-3518.9
PM 10	-4.106137]		

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

The cruit & Engline Emissions Tuetors (10/100018 Tuet)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	4353
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----	----	-------	--------	-------------------

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C TGOs
- Activity Description: Starting in 2030, decrease T-38C TGOs by 9,577.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-1.627085

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.403845

SO _x	-0.626252
NO _x	-0.409698
СО	-38.084325
PM 10	-1.047655

Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1892.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-1.627085
SO _x	-0.626252
NO _x	-0.409698
СО	-38.084325
PM 10	-1.047655

& APU) partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.403845
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1892.8

13.2 Aircraft & Engines

Number of Engines:

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

2

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

0 0

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		17			
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:					
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:					
Number of Annual Tr	im Test(s) per Aircraft:	0			
- Default Settings Used:	No				

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	
Takeoff [Military] (mins):	

Takeoff [After Burn]	(mins):	0
Climb Out [Intermed	3.56	
Approach [Approach]	0	
Taxi/Idle In [Idle] (mi	0	
- Trim Test		
Idle (mins):	12	
Annroach (mins).	27	

Approach (mms):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	(======) (=====)			
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	_	
	LTO			

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

)	()					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2028, add trim test and engine test cell for 21 T-7As.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.221964
SO _x	0.072285
NO _x	1.233454
СО	3.807975
PM 10	0.086592

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.077654
Pb	0.000000
NH ₃	0.000000
CO ₂ e	218.5

Pollutant

PM 2.5

Pb

NH₃ CO₂e **Emissions Per Year (TONs)**

0.039568

 $\frac{0.000000}{0.000000}$

120.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.121136
SO _x	0.039746
NO _x	0.660320
СО	1.921205
PM 10	0.044158

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.100828
SO _x	0.032539
NO _x	0.573135
СО	1.886770
PM 10	0.042434

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.038086
Pb	0.000000
NH ₃	0.000000
CO ₂ e	98.3

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation:
 T-7A
 Engine Model:
 F404-GE-102
 Primary Function:
 Trainer
 Aircraft has After burn:
 Yes
 Number of Engines:
 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	21
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	6.8
Takeoff [Military] (mins):	0.25
Takeoff [After Burn] (mins):	0.25
Climb Out [Intermediate] (mins):	1.4
Approach [Approach] (mins):	4
Taxi/Idle In [Idle] (mins):	4.4

- Trim Test	
Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

_

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aircraft Engine Test Cell

14.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 21

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

14.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

14.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 T-38C Decrease Trim Test and Test Cell
- Activity Description:

Starting in 2028, remove trim test and engine test cell for 23 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2028
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.441333
SO _x	-0.107957
NO _x	-0.314704
СО	-5.605788
PM 10	-0.118552

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.044035
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-326.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.210261
SO _x	-0.054556
NO _x	-0.155328
CO	-2.774568
PM 10	-0.058050

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.231073
SO _x	-0.053401
NO _x	-0.159375
CO	-2.831220
PM 10	-0.060502

t & APU) part :	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.019822
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-164.9

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.024212
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.4

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- All chalt & Elignic Elinissions Factors (10/100010 fuci)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test

Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	Number of APU	Operation	Exempt	Designation	Manufacturer
_		operation	Lacmpt	Designation	1) fullutuetui ei
_	per Aircraft	Hours for Each	Source?		
	per Antran	Hours for Each	Source:		
	-	ITO			
		LTO			

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

15.5 Aircraft Engine Test Cell

15.5.1 Aircraft Engine Test Cell Assumptions

```
- Engine Test Cell
Total Number of Aircraft Engines Tested Annually: 46
```

- Default Settings Used: No

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3
Idle Duration (mins):	0
Approach Duration (mins):	12
Intermediate Duration (mins):	0
Military Duration (mins):	8
After Burner Duration (mins):	2

15.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

15.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location Clay, MS; Lowndes, MS; Monroe, MS County: Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2029, add trim test and engine test cell for 31 T-7As.

- Activity Start Date Start Month: 1

Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.327661
SO _x	0.106706
NO _x	1.820814
СО	5.621297
PM 10	0.127826

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.114632
Pb	0.000000
NH ₃	0.000000
CO ₂ e	322.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		
VOC	0.178820		
SO _x	0.058673		
NO _x	0.974757		
СО	2.836065		
PM 10	0.065185		

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.148841
SO _x	0.048033
NO _x	0.846056
СО	2.785232
PM 10	0.062641

PM 2.5	0.058410
Pb	0.000000
NH ₃	0.000000
CO ₂ e	177.3

Pollutant

Emissions Per Year (TONs)

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.056222
Pb	0.000000
NH ₃	0.000000
CO ₂ e	145.2

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1					
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:						
16.2.2 Aircraft & Engines	Emission Factor(s)					
 Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors. 	s Factors (lb/1000lb fuel) Contact Air Quality Subject Matter Expert for More Information regarding this					
16.3 Flight Operations						
16.3.1 Flight Operations A	ssumptions					
Number of Annual TGO						
- Default Settings Used:	lo					
- Flight Operations TIMs (Ti Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	6.8 : 0.25 ns): 0.25 (mins): 1.4 ins): 4					
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	0 4.97 10.45 6.14 2.04					
16.3.2 Flight Operations F	ormula(s)					
- Aircraft Emissions per Mode for LTOs per Year AEM _{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000						

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16.5 Aircraft Engine Test Cell

16.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	31

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

16.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

16.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

 $TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000$

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 T-38C Decrease Trim Test and Test Cell

- Activity Description: Starting in 2029, remove trim test and engine test cell for 45 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2029
- Activity End Date Indefinite: Yes End Month: N/A

End Year: N/A

- Activity Emissions:

Theory Emissi	0115.
Pollutant	Emissions Per Year (TONs)
VOC	-0.863478
SO _x	-0.211221
NO _x	-0.615725
СО	-10.967846
PM 10	-0.231950

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.086155
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-638.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.411379
SO _x	-0.106740
NO _x	-0.303903
СО	-5.428503
PM 10	-0.113576

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.452098
SO _x	-0.104481
NO _x	-0.311821
СО	-5.539343
PM 10	-0.118374

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.038783
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-322.6

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.047372
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-315.8

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test

Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each LTO	Source?		

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel V Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
1742 Auxiliany Dower Un	·	mula(
17.4.3 Auxiliary Power Un	II (AFU) FOI	riiruta(5)					
- Auxiliary Power Unit (APU) APU _{POL} = APU * OH * LTO *		er Year						
 APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons 								
17.5 Aircraft Engine Test	Cell							
17.5.1 Aircraft Engine Tes	t Cell Assum	nptions	5					
- Engine Test Cell Total Number of Aircraft	Engines Test	ed Ann	ually: 9	0				
- Default Settings Used: Y	es							
- Annual Run-ups / Test Dura Annual Run-ups (Per Air Idle Duration (mins): Approach Duration (mins Intermediate Duration (m Military Duration (mins): After Burner Duration (n	craft Engine): s): ains):	0 (12 0 (8 (default) default) (default) default) default) default)					
17.5.2 Aircraft Engine Tes	t Cell Emissi	ion Fa	ctor(s)					
- See Aircraft & Engines Emis	ssion Factor(s	5)						
17.5.3 Aircraft Engine Tes	t Cell Formu	ıla(s)						
- Aircraft Engine Test Cell En TestCellPS _{POL} = (TD / 60) * (Fo					(ONs)			
TestCellPS _{POL} : Aircraft En TD: Test Duration (min) 60: Conversion Factor min	utes to hours	Emissi	ons per Po	llutant & P	ower Sett	ing (TONs))	

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCell = TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A Increase Trim Test and Test Cell

- Activity Description:

Starting in 2030, add trim test and engine test cell for 9 T-7As.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.095127
SO _x	0.030979
NO _x	0.528623
СО	1.631989
PM 10	0.037111

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.033280
Pb	0.000000
NH ₃	0.000000
CO ₂ e	93.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.051916
SO _x	0.017034
NO _x	0.282994
CO	0.823374
PM 10	0.018925

Pollutant	Emissions Per Year (TONs)
VOC	0.043212
SO _x	0.013945
NO _x	0.245629
CO	0.808616

t <u>& APU) partj:</u>	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.016958
Pb	0.000000
NH ₃	0.000000
CO ₂ e	51.5

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.016322
Pb	0.000000
NH ₃	0.000000
CO ₂ e	42.1

Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations SHIGH Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4	PM 10 0.018186	
Aircraft & Engine Aircraft & Engine Aircraft & Engine Mircraft & Engine Model: F404-GE-102 Primary Function: Trainer Aircraft & After burn: Yes Number of Engines: 1 Mircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft & Engine a Surrogate? No Original Aircraft & Engines Emission Factor(s) Mircraft & Engine Emission Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 3. Flight Operations Mumber of Aircraft: 9 Number of Aircraft: 9 Number of Aircraft: 9 Number of Aircraft: 0 Number of Aircraft: 0 Number of Aircraft: 0 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 0.25 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 4.4 Taxi/Idle In [Infermediate] (mins): 4.4 Trim Test Idle (mins): 0 Approach [Approach] (mins): 4.97 Intermediate (mins): 4.94	.2 Aircraft & Engines	
Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE-102 Primary Function: Trainer Aircraft & After burn: Yes Number of Engines: 1 Vircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: 3.2.2 Aircraft & Engines Emission Factor(s) Vircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 3.3 Flight Operations 3.3 Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 9 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Aifter Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Taxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 4.4 Traxi/Idle In [Idle] (mins): 6.14		
Aircraft Designation: T-7A Engine Model: F404-GE-102 Primary Function: Traine Aircraft has After burn: Yes Number of Engines: 1 Xircraft & Engine Surrogate Is Aircraft & Engine Surrogate? Is Aircraft & Engine Surrogate? No Original Aircraft Name: Original Legine Name: 32.2 Aircraft & Engines Emission Factor(s) Xircraft & Engine Emissions Factors (b/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. Bit String Surgate? 3.3 Flight Operations Sa.3 Flight Operations Assumptions 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Tight Operations TIMs (Time In Mode) 6.8 Takeoff [Aiter Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 frim Test Idle (mins): 4.4 Frim Test Idle (mins):	3.2.1 Aircraft & Engines Assumptions	
Engine Model: F404-GE-102 Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine a Surrogate Is Aircraft & Engine a Surrogate? Is Aircraft & Engine a Surrogate? No Original Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Proprietary Information. Solution: 8.3.1 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations (Journamet Context) 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMS (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 4.4 Trim Test Idle (mins): 4.4		
Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engine Emission Factors (Ib/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations Sature of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual LTOs (Couch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Tak/off [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 4.4 Trim Test Idle (mins): 6.4 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 6.14		
Aircraft has After burn: Yes Number of Engines: 1 Aircraft & Engine a Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft & Engine a Surrogate? No Original Engine Name: 8.2.2 Aircraft & Engine Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations Number of Aircraft: 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.4 Trim Test Idle (mins): 0.45 Military (mins): 6.14		
Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations 8.3.1 Flight Operations Sumber of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Tim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takcoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45		
Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 44 Taxi/Idle In [Idle] (mins): 44 Taxi/Idle In [Idle] (mins): 44 Mapproach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	Number of Engines: 1	
Original Aircraft Name: Original Engine Name: 8.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 0.45 Military (mins): 0.45 Military (mins): 0.45	Aircraft & Engine Surrogate	
Original Engine Name: 18.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 18.3.1 Flight Operations 18.3.1 Flight Operations Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
 18.2.2 Aircraft & Engines Emission Factor(s) Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 18.3 Flight Operations 18.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14 		
Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3 Flight Operations 8.3.1 Flight Operations Flight Operations Number of Aircraft: 9 Number of Annual LTOS (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGS (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors. 8.3.1 Flight Operations Flight Operations Assumptions Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TCOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual TCOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
engine's Emission Factors. 18.3 Flight Operations 18.3.1 Flight Operations Assumptions Flight Operations Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.7 Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		nformation regarding this
 Image: Provide the system of the sy		normation regulating this
 83.1 Flight Operations Assumptions Flight Operations Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.7 Intermediate (mins): 10.45 Military (mins): 6.14 	9.3 Elight Onovations	
Flight Operations 9 Number of Aircraft: 9 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 4.4 Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Number of Aircraft:9Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:0Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:0Number of Annual Trim Test(s) per Aircraft:1Default Settings Used:NoFlight Operations TIMs (Time In Mode)6.8Taxi/Idle Out [Idle] (mins):6.8Takeoff [Military] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4.4Trim Test1Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	o.o Tingit Operations	
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 5 Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 1 Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14		
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0 Number of Annual Trim Test(s) per Aircraft: 1 Default Settings Used: No Flight Operations TIMs (Time In Mode) 6.8 Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test 1 Idle (mins): 0 Approach (mins): 4.4 Trim Test 1 Idle (mins): 10.45 Military (mins): 6.14	8.3.1 Flight Operations Assumptions Flight Operations	
Number of Annual Trim Test(s) per Aircraft:1Default Settings Used:NoFlight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins):6.8Takeoff [Military] (mins):0.25Takeoff [Military] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Trim Test4.4Trim Test0Idle (mins):4.4Intermediate (mins):10.45Military (mins):6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft:	
Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Taxi/Idle Out [Idle] (mins):6.8Takeoff [Military] (mins):0.25Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test0Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0 0
Takeoff [Military] (mins):0.25Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test0Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: 	0 0
Takeoff [After Burn] (mins):0.25Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim TestIdle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) 	0 0
Climb Out [Intermediate] (mins):1.4Approach [Approach] (mins):4Taxi/Idle In [Idle] (mins):4.4Trim Test4.4Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 	0 0
Taxi/Idle In [Idle] (mins):4.4Trim Test Idle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 	0 0
Trim TestIdle (mins):0Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 	0 0
Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 	0 0
Approach (mins):4.97Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 	0 0
Intermediate (mins):10.45Military (mins):6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test 	0 0
Military (mins): 6.14	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4 Taxi/Idle In [Idle] (mins): 4.4 Trim Test Idle (mins): 0 	0 0
AfterBurn (mins): 2.04	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 6.8 Takeoff [Military] (mins): 0.25 Takeoff [After Burn] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 4.97 	0 0
	 8.3.1 Flight Operations Assumptions Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: Default Settings Used: No Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): 0.25 Takeoff [Military] (mins): 0.25 Climb Out [Intermediate] (mins): 1.4 Approach [Approach] (mins): 4.4 Trim Test Idle (mins): 0 Approach (mins): 10.45 	0 0

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18.5 Aircraft Engine Test Cell

18.5.1 Aircraft Engine Test Cell Assumptions

 Engine Test Cell Total Number of Aircraft Engines Tested Annually: 9

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)

Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

18.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

18.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C Decrease Trim Test and Test Cell

- Activity Description: Starting in 2030, remove trim test and engine test cell for 17 T-38Cs.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.326203
SO _x	-0.079795
NO _x	-0.232607
CO	-4.143408
PM 10	-0.087626

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.032548
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-241.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.155410
SO _x	-0.040324
NO _x	-0.114808
СО	-2.050768
PM 10	-0.042906

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.170793
SO _x	-0.039470
NO _x	-0.117799
CO	-2.092641
PM 10	-0.044719

PM 2.5	-0.014651
Pb	0.000000
NH ₃	0.000000
CO_2e	-121.9

Pollutant

DI

Emissions Per Year (TONs)

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017896
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-119.3

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234

				1		<u>.</u>		
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234
19.3 Flight (19.3 Flight Operations							
19.3.1 Flight	Operations	Assumptio	ns					
Number o Number o	tions f Aircraft: f Annual LT(f Annual TG(f Annual Trir	Os (Touch-a	nd-Go) cyc			it: 0 0 3		
- Default Setti	ngs Used:	No						
Takeoff [] Takeoff [/ Climb Ou Approach	tions TIMs (7 Out [Idle] (mi Military] (min After Burn] (n t [Intermedia [Approach] (In [Idle] (min	ns): s): nins): te] (mins): mins):	le)	12.8 0.2 0.9 3.8 6.4				
- Trim Test Idle (mins Approach Intermedi Military (AfterBurn	(mins): ate (mins): mins):	0 4.97 10.45 6.14 2.04						
19.3.2 Flight	Operations	Formula(s)					
- Aircraft Em AEM _{POL} = (TI				D / 2000				
TIM: Tim 60: Conve FC: Fuel 1000: Con EF: Emiss NE: Num LTO: Num	Aircraft Emiss e in Mode (mi ersion Factor n Flow Rate (lb/ oversion Factor sion Factor (lb/ ber of Engines nber of Landir oversion Factor	n) ninutes to hou nr) r pounds to 1 (1000lb fuel) ng and Take-0	urs 000pounds off Cycles (ft)			
- Aircraft Em AE _{LTO} = AEM		-		+ AEM _{CLIM}	BOUT + AEM_T	AKEOFF		

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19.4 Auxiliary Power Unit (APU)

19.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: No

- Auxiliary Power Unit (APU)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
r	LTO			

19.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

19.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

19.5 Aircraft Engine Test Cell

19.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	34

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

19.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

19.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

20. Personnel

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Add 43 personnel

- Activity Description:

Addition of 43 personnel during the T-7A and T-38C transition period. Conservatively assumed all personnel commute daily.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2029

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.190336
SO _x	0.001295
NO _x	0.163202
СО	2.164712
PM 10	0.003741

Pollutant	Total Emissions (TONs)
PM 2.5	0.003415
Pb	0.000000
NH ₃	0.011726
CO ₂ e	186.2

20.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	43
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

20.3 Personnel On Road Vehicle Mixture

- On Road Vehic	le Mixture (%)
-----------------	----------------

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

20.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

20.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{Total}: Total Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Personnel On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

21. Personnel

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove 74 personnel

- Activity Description:

Net decrease of 74 personnel following T-7A arrival and T-38C withdrawal. Conservatively assumed all personnel commute daily.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.163778
SO _x	-0.001114
NO _x	-0.140430
СО	-1.862659
PM 10	-0.003219

21.2	Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	74
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule	
Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002938
Pb	0.000000
NH ₃	-0.010089
CO ₂ e	-160.2

Support Contractor Personnel:5 DayAir National Guard (ANG) Personnel:4 DayReserve Personnel:4 Day

5 Days Per Week (default) 4 Days Per Week (default) 4 Days Per Month (default)

21.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

21.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

21.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_c: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (33,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 3.65 acres (159,000 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 300 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 33,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 33,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 2.75 acres (120,000 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

The analysis assumes the following: (1) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; (2) for special vehicles and non-road combustion equipment needed to support T-7A operations/facilities, their operation/emissions would be equally offset by eliminating or reusing vehicles and non-road equipment that were supporting T-38C operations; and (3) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Activity Start Date

Start Month:	7
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.951152
SO _x	0.010236
NO _x	3.131076
СО	4.538396

Pollutant	Total Emissions (TONs)
PM 2.5	0.113029
Pb	0.000000
NH ₃	0.002861
CO ₂ e	989.0

PM 10		6.458026					
22.1 Site Gradi	ing Phase						
22.1.1 Site Gra	ding Phas	e Timeline A	ssumptions				
- Phase Start Dat Start Month Start Quarte Start Year:	: 7						
- Phase Duration Number of M Number of D	Aonth: 4						
22.1.2 Site Gra	ding Phas	e Assumptio	ns				
	to be Grad Iaterial to			159000 0 0			
- Site Grading De Default Setti	ngs Used:	-	Yes				
Average Day	v(s) worked	per week:	5 (default)				
Average Day	xhaust (def	ault)	× ,				
	xhaust (def	-	× ,		Number O Equipmen		urs Per Day
- Construction E	<u>xhaust (</u> def Eq	ault)	× ,		Number O Equipmen 1		
	xhaust (def Eq	'ault) Juipment Nam	× ,		Equipmen		urs Per Day
- Construction E Graders Compos Other Constructi Rubber Tired Do	xhaust (def Eq site ion Equipmo ozers Compo	Yault) Juipment Nam ent Composite osite	× ,		Equipmen 1		8
- Construction E Graders Compos Other Constructi	xhaust (def Eq site ion Equipmo ozers Compo	Yault) Juipment Nam ent Composite osite	× ,		Equipmen 1 1		8 8
Construction Est Graders Compos Other Constructi Rubber Tired Do Tractors/Loaders Vehicle Exhaus Average Hau Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t aling Truck aling Truck	Yault) Juipment Nam ent Composite osite Composite Composite	ie 	20 (defa ile): 20 (defa	Equipmen		8 8 8 8
Construction E Graders Compos Other Constructi Rubber Tired Do Tractors/Loaders - Vehicle Exhaus Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t iling Truck iling Truck iling Truck	Yault) Juipment Name ent Composite osite Composite Composite Composite Capacity (yd Round Trip (Lixture (%)	³): Commute (m	ile): 20 (defa	Equipmen 1 1 2 uult) uult)	It	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t aling Truck aling Truck	Yault) Juipment Nam ent Composite osite Composite Composite	ie 		Equipmen	t	8 8 8 8
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau POVs Worker Trips	xhaust (def Eq site ton Equipmo ozers Compos/Backhoes t lling Truck lling Truck t Vehicle M LDGV 0	Yault) Juipment Name ent Composite osite Composite Composite Capacity (yd c Round Trip of Lixture (%)	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	It	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau POVs Worker Trips	xhaust (def Eq Site fon Equipmo ozers Compo s/Backhoes t ling Truck ling Truck ling Truck LDGV 0	Fault) Juipment Name ent Composite C	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	t	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau Average Hau Average Would the Second Se	xhaust (def Eq in Equipmo ozers Compo s/Backhoes t iling Truck iling Truck t Vehicle M LDGV 0 rker Round /ehicle Mix LDGV	Fault) Juipment Name ent Composite composite Compos	ie ³): Commute (m <u>HDGV</u> 0	ile): 20 (defa	Equipmen 1 1 2 ult) ult) LDDT	t	8 8 8 7
Construction Examples Graders Compose Other Construction Rubber Tired Doc Tractors/Loaders Vehicle Exhaus Average Hau Average Hau Average Hau Average Hau Average Wo Worker Trips Average Wo Worker Trips V	xhaust (def Eq site on Equipmo ozers Compo s/Backhoes t lling Truck aling Truck t Vehicle M LDGV 0 rker Round Vehicle Mix	Fault) Juipment Name ent Composite cosite Comp	a a a a a b a a b a c o mute (m b c o mute (m c o ute (mile):	ile): 20 (defa LDDV 0 20 (default)	Equipmen 1 1 2 ult) ult) LDDT 0	t	8 8 8 7 7

22.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CH ₄	CO ₂ e

Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozers Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \mbox{ Vehicle Emissions (TONs)} \\ VMT_{WT}: \mbox{ Worker Trips Vehicle Miles Travel (miles)} \\ 0.002205: \mbox{ Conversion Factor grams to pounds} \\ EF_{POL}: \mbox{ Emission Factor for Pollutant (grams/mile)} \\ VM: \mbox{ Worker Trips On Road Vehicle Mixture (%)} \\ 2000: \mbox{ Conversion Factor pounds to tons} \end{array}$

22.2 Trenching/Excavating Phase

22.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 2 Number of Days: 0

22.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	900
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	rs Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

22.3 Building Construction Phase

22.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 1 Start Quarter: 1 Start Year: 2026

- Phase Duration

Number of Month:18Number of Days:0

22.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	33000
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	Forklifts Composite							
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449

Generator Sets Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

22.4 Architectural Coatings Phase

22.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 6 Start Quarter: 1 Start Year: 2027
- Phase Duration Number of Month: 1 Number of Days: 0

22.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 33000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trij	ps Vehicle Mixt	ture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e		
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428		
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572		
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241		
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132		
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757		
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593		
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696		

22.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22.5 Paving Phase

22.5.1 Paving Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 7
Start Quarter: 1
```

Start	Year:	2027

- Phase Duration Number of Month: 2 Number of Days: 0

22.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 120000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	2	6
Rollers Composite	1	7

- Vehicle Exhaust

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89			
Other Construction Equipment Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60			
Rubber Tired Dozer	s Composit	te									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

Average Hauling Truck Round Trip Commute (mile): 20 (default)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
 VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (12,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 0.75 acres (32,500 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 500 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new UMT facility would total approximately 12,000 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 312,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways and roadways would occur on an area totaling approximately 0.2 acres (8,750 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

maennite:	raise
End Month:	8
End Month:	2027

- Activity Emissions: Pollutant Total Emissions (TONs)

Pollutant Total Emissions (TONs)

VOC	0.474579
SO _x	0.006568
NO _x	1.680257
CO	2.695038
PM 10	1.382261

PM 2.5	0.059107
Pb	0.000000
NH ₃	0.001602
CO ₂ e	636.1

23.1 Site Grading Phase

23.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 4 Number of Days: 0

23.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	32500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default) Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.1.3 Site Grading Phase Emission Factor(s)

Graders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composit	te						
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.2 Trenching/Excavating Phase

23.2.1 Trenching / Excavating Phase Timeline Assumptions

Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 2 Number of Days: 0

23.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	1500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

T T T T T T	umber Of quipment	Hours Per Day
--------------------	----------------------	---------------

Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozen	's Composi	te								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)

2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.3 Building Construction Phase

1

23.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month:

Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 18 Number of Days: 0

23.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Office or Industrial
12000
15
N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

23.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	inause et () of her fifty Emission Factors (grans, inne)									
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e	
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428	
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572	
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241	
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132	
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757	
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593	
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696	

23.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.4 Architectural Coatings Phase

23.4.1 Architectural Coatings Phase Timeline Assumptions

6
1
2027

- Phase Duration Number of Month: 1 Number of Days: 0

23.4.2 Architectural Coatings Phase Assumptions

- General Arc Building	hitectural Co Category:	atings Inform Non-Resid					
Total Squ	are Footage (ft ²): 12000					
Number o	of Units:	N/A					
- Architectura	l Coatings De	fault Settings	1				
Default S	ettings Used:	-	Yes				
Average I	Day(s) worked	l per week:	5 (default)				
- Worker Trip				20 (1.6.10)			
Average	Worker Roun	d Trip Comm	iute (mile):	20 (default)			
- Worker Trip	os Vehicle Mix	xture (%)					
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	

MC

DOLL	5 0.00	5 0.00	0	0	0	0	0
POVs	50.00	50.00	0	0	0	0	0

23.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

23.5 Paving Phase

23.5.1 Paving Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 7
Start Quarter: 1
Start Year: 2027
```

- Phase Duration Number of Month: 2 Number of Days: 0

23.5.2 Paving Phase Assumptions

- General Paving Information

Paving Area (ft²): 8750

- Paving Default Settings

```
Default Settings Used:YesAverage Day(s) worked per week:5 (default)
```

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89	
Other Construction	Equipment	t Composit	e						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60	
Rubber Tired Dozen	rs Composi	te							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45	
Tractors/Loaders/Backhoes Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	СО	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132

LDDT	000.233	000.004	000.371	004.384	000.007	000.006	000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150	000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023	000.054	00393.696

23.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from November 2025 through November 2026.

Trenching to extend site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 1 month.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in December 2025 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in November 2026 and last approximately 1 month.

Paving for approach pavements would occur on an area totaling approximately 300 square feet. Paving would begin November 2026 and last approximately 1 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.558724
SO _x	0.005128
NO _x	1.550784
CO	2.357436
PM 10	0.056807

Pollutant	Total Emissions (TONs)
PM 2.5	0.053680
Pb	0.000000
NH ₃	0.001724
CO ₂ e	492.5

24.1 Trenching/Excavating Phase

24.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 1 Number of Days: 0

24.1.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	300
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953

HDGV	001.373	000.015	002.807	024.705	000.026	000.023	000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006	000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007	000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334	000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024	000.050	00392.901

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ HA_{OnSite}: \mbox{ Amount of Material to be Hauled On-Site (yd^3)} \\ HA_{OffSite}: \mbox{ Amount of Material to be Hauled Off-Site (yd^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions \ (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel \ (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

24.2 Building Construction Phase

24.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 12 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 12 Number of Days: 0

24.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):24111Height of Building (ft):20Number of Units:N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

LDGV LDGT HDGV LDDV LDDT HDDV MC

POV_{c} 50.00 50.00 0 0 0 0	
POVs 50.00 50.00 0 0 0 0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

, endor inp	o venicie ivina	(/ U)					
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

24.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	:							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Com	posite					•		
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Ba	ackhoes Co	mposite						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

24.3 Architectural Coatings Phase

24.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	11
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 1 Number of Days: 0

24.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24.4 Paving Phase

24.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

24.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 300
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

24.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Aircraft Shelters

- Activity Description:

Construction of 46 aircraft shelters (sunshades) would occur from November 2025 through November 2026.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of approximately 68 sunshades totaling approximately 180,000 square feet. Demolition would begin in November 2025 and last approximately 6 months.

Construction would include installation of 46 sunshades totaling approximately 210,500 square feet. The height of all sunshades was assumed to be 15 feet. Construction would begin in May 2026 and last approximately 7 months.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.264204
SO _x	0.005243
NO _x	1.652907
СО	2.202898

Pollutant	Total Emissions (TONs)
PM 2.5	0.055859
Pb	0.000000
NH ₃	0.003513
CO ₂ e	525.3

PM 10	0.623968		
25.1 Demolition	Phase		
25.1.1 Demoliti	on Phase Timeline Assumptions		
- Phase Start Dat Start Month: Start Quarter Start Year:	11		
- Phase Duration Number of M Number of D			
25.1.2 Demoliti	on Phase Assumptions		
	tion Information ling to be demolished (ft ²): 180000 lding to be demolished (ft): 15		
- Default Settings	Used: Yes		
- Average Day(s)	worked per week: 5 (default)		
- Construction Ex			
	Equipment Name	Number Of Equipment	Hours Per Day
Concrete/Industr	al Saws Composite	1	8
	•	1	
Rubber Tired Do	zers Composite	1	1

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539			
Rubber Tired Dozen	Rubber Tired Dozers Composite										

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45			
Tractors/Loaders/Backhoes Composite											
VOC SO _x NO _x CO PM 10 PM 2.5 CH ₄ CO ₂ e											
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
 VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
 0.002205: Conversion Factor grams to pounds
 EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

25.2 Building Construction Phase

25.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:	5
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 7 Number of Days: 0

25.2.2 Building Construction Phase Assumptions

- General Building Construction Information

uon mation
Office or Industrial
210500
15
N/A

- Building Construction Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.2.3 Building Construction Phase Emission Factor(s)

Construction Exhaust Emission 1 actors (10/10/17) (actually											
Cranes Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Generator Sets Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057			
Tractors/Loaders/B	ackhoes Co	mposite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			
Welders Composite											
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650			

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

· emiere L	inina abt et i	or mer int		1 1 actors (g	5	/			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from July 2026 through August 2028.

Construction of the Egress Shop addition would total approximately 4,000 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in July 2026 and last approximately 25 months.

Architectural coatings would be applied to the addition, totaling 4,000 square feet. Architectural coating application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2026

- Activity End Date

Indefinite:FalseEnd Month:8End Month:2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.289900
SO _x	0.005043
NO _x	1.163443
СО	2.124393
PM 10	0.036831

Pollutant	Total Emissions (TONs)
PM 2.5	0.036783
Pb	0.000000
NH ₃	0.001413
CO ₂ e	485.3

26.1 Building Construction Phase

26.1.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2026

- Phase Duration

Number of Month: 25 Number of Days: 0

26.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	4000
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

26.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				

Emission Factors 0.033	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
------------------------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

26.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VT}: \ Vender \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

26.2 Architectural Coatings Phase

26.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	8
Start Quarter:	1
Start Year:	2028

- Phase Duration Number of Month: 1 Number of Days: 0

26.2.2 Architectural Coatings Phase Assumptions

· General Architectural Coatings Information							
Building Category:	Non-Residential						
Total Square Footage ($(ft^2):$ 4000						
Number of Units:	N/A						

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.2.3 Architectural Coatings Phase Emission Factor(s)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

26.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from November 2025 through November 2026.

Construction of the deflectors would total approximately 48,000 feet. The height of the deflectors was assumed to be 12 feet. Construction would begin in November 2025 and last approximately 13 months.

- Activity Start Date

Start Month:11Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.265030
SO _x	0.004879
NO _x	1.502261
CO	2.241723
PM 10	0.051185

Pollutant	Total Emissions (TONs)
PM 2.5	0.051022
Pb	0.000000
NH ₃	0.001713
CO ₂ e	469.5

27.1 Building Construction Phase

27.1.1 Building Construction Phase Timeline Assumptions

- Phase Start I

Start Month:	11
Start Quarter:	1
Start Year:	2025

- Phase Duration

Number of Month: 13 Number of Days: 0

27.1.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 48000 Height of Building (ft): 12 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	0	0	0	0	0	100.00	0		

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

27.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Generator Sets Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872
Welders Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

27.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Renovate Building 452 (Hangar 3)

- Activity Description:

Renovation of Hangar 452 would occur from August 2024 through February 2026.

It was assumed 25 percent of the total square footage of the facility (21,024 square feet * 0.25 = 5,256 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 19 months.

It was assumed architectural coatings would be required for the entire facility (21,024 square feet) following the renovations. Architectural coating application would begin in February 2026 and last approximately 1 month.

- Activity Start Date

Start Month:	8
Start Month:	2024

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.436750
SO _x	0.003838
NO _x	0.965344
СО	1.619187
PM 10	0.032164

Pollutant	Total Emissions (TONs)
PM 2.5	0.032123
Pb	0.000000
NH ₃	0.001095
CO ₂ e	369.5

28.1 Building Construction Phase

28.1.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	8
Start Quarter:	1
Start Year:	2024

- Phase Duration

Number of Month:19Number of Days:0

28.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	5256
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78		
Forklifts Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		

Emission Factors 0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875
-------------------------	--------	--------	--------	--------	--------	--------	--------

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

28.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VT}: \ Vender \ Trips \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Worker \ Trips \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

28.2 Architectural Coatings Phase

28.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month:	2
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 1 Number of Days: 0

28.2.2 Architectural Coatings Phase Assumptions

- General Architectural Co	oatings Information
Building Category:	Non-Residential
Total Square Footage	(ft ²): 21024
Number of Units:	N/A

- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Architectural Coatings Phase Emission Factor(s)

110	продінія		~ (8)					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

28.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

29. Construction / Demolition

29.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Wash Rack Renovation (Building 454)

- Activity Description:

Renovation of Building 454 to relocate the wash rack would occur from August 2024 through September 2025.

It was assumed 25 percent of the total square footage of the facility (13,124 square feet * 0.25 = 3,281 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 14 months.

It was assumed architectural coatings would be required for the entire facility (13,124 square feet) following the renovations. Architectural coatings application would begin in September 2025 and last approximately 1 month.

- Activity Start Date

Start Month:8Start Month:2024

- Activity End Date

Indefinite:	False
End Month:	9
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.294183
SO _x	0.002825
NO _x	0.710509
СО	1.191602
PM 10	0.023672

Pollutant	Total Emissions (TONs)
PM 2.5	0.023644
Pb	0.000000
NH ₃	0.000796
CO ₂ e	271.9

29.1 Building Construction Phase

29.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month:

Start Month:8Start Quarter:1Start Year:2024

- Phase Duration Number of Month: 14 Number of Days: 0

29.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:Office or IndustrialArea of Building (ft²):3281Height of Building (ft):15Number of Units:N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6

Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

29.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78			
Forklifts Composite	Forklifts Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451			
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

29.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

29.2 Architectural Coatings Phase

29.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 9 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 1 Number of Days: 0

29.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 13124 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

29.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

29.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

30. Construction / Demolition

30.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm would occur from August 2024 through December 2024.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in August 2024 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date Start Month: 8 Start Month: 2024

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2024

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.103650
SO _x	0.002153
NO _x	0.497117
CO	0.837771

Pollutant	Total Emissions (TONs)
PM 2.5	0.018234
Pb	0.000000
NH ₃	0.000275
CO ₂ e	203.1

		0.266939					
30.1 Trenc	hing/Excavati	ng Phase					
30.1.1 Tre	nching / Excav	ating Phase T	imeline A	ssumptions			
- Phase Star Start M Start Qu Start Ye	onth: 8 uarter: 1						
	ation c of Month: 5 c of Days: 0						
30.1.2 Tre	nching / Excav	ating Phase A	ssumption	18			
Area of Amount	renching/Excava Site to be Trenc t of Material to l t of Material to l	hed/Excavated be Hauled On-S	l (ft ²): Site (yd ³):	5000 0 0			
Default	Default Settings Settings Used: e Day(s) worked	•	Yes 5 (default)				
- Constructi	on Exhaust (def	ault) uipment Name			Number C)f Ua	ours Per Day
	Ľq	uipment ivame			Equipmer		Juis i ei Day
					2		
Excavators	Composite				۷.		8
Other Gene	ral Industrial Equ		site		1		8
Other Gene			site				
Other Gene Tractors/Lo - Vehicle Ex Average Average	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck haust Vehicle M	Composite Capacity (yd ³) Round Trip C): 'ommute (n	, , , , , , , , , , , , , , , , , , ,	1 1 ult) ult)		8
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck	Composite Capacity (yd ³) Round Trip C):		1 1 ult)	HDDV	8
Other Gene Tractors/Lo - Vehicle Ex Average Average	ral Industrial Equ aders/Backhoes haust e Hauling Truck e Hauling Truck haust Vehicle M	Composite Capacity (yd ³) Round Trip C lixture (%)): 'ommute (n	nile): 20 (defa	1 1 ult) ult)	HDDV 100.00	8
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr	ral Industrial Equ baders/Backhoes (haust e Hauling Truck e Hauling Truck haust Vehicle M LDGV 0	Composite Capacity (yd ³) Round Trip C lixture (%) LDGT 0): 'ommute (n <u>HDGV</u> 0	nile): 20 (defa	l l uult) LDDT		8 8 MC
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr Average	ral Industrial Equ baders/Backhoes Haust Hauling Truck Hauling Truck haust Vehicle M LDGV 0	Composite Capacity (yd ³) Round Trip C LDGT 0 I Trip Commut): fommute (n HDGV 0 te (mile):	nile): 20 (defa	l l uult) LDDT		8 8 MC
Other Gene Tractors/Lo - Vehicle Ex Average Average - Vehicle Ex POVs - Worker Tr Average	ral Industrial Equ baders/Backhoes (haust Hauling Truck Hauling Truck haust Vehicle M LDGV 0 'ips Worker Round	Composite Capacity (yd ³) Round Trip C LDGT 0 I Trip Commut): 'ommute (n <u>HDGV</u> 0	nile): 20 (defa	l l uult) LDDT		8 8 MC

30.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

· · · · · · · · · · · · · · · · · · ·		
VOC SO _x NO _x CO PM 10 PM 2.5 Pb	NH ₃	CO ₂ e

LDGV	000.597	000.007	000.639	005.101	000.011	000.009	000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010	000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023	000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006	000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007	000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334	000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024	 000.050	00392.901

30.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

31. Construction / Demolition

31.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Renovation of the Squadron Operations Buildings (Buildings 216 and 234) would occur from July 2025 through August 2028.

It was assumed 25 percent of the total square footage of Building 216 (26,603 square feet) and Building 234 (13,686 square feet) (40,289 total square feet * 0.25 = 10,072.25 square feet) would be construction to equate the renovations. Renovations would begin in July 2025 and last approximately 34 months.

It was assumed architectural coatings would be required for the entire building area (40,289 square feet) following the renovations. Architectural coatings application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.798913
SO _x	0.006868
NO _x	1.585700
СО	2.891207
PM 10	0.050214

Pollutant	Total Emissions (TONs)
PM 2.5	0.050138
Pb	0.000000
NH ₃	0.001947
CO ₂ e	661.2

31.1 Building Construction Phase

31.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 34 Number of Days: 0

31.1.2 Building Construction Phase Assumptions

- General Building Construction Information			
Building Category:	Office or Industrial		
Area of Building (ft ²):	10072.25		
Height of Building (ft):	15		
Number of Units:	N/A		

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

31.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite

Cranes composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e

Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite	Forklifts Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite							
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

31.2 Architectural Coatings Phase

31.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2028

- Phase Duration Number of Month: 1 Number of Days: 0

31.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 40289 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

31.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man * day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)

800: Conversion Factor square feet to man days ($1 \text{ ft}^2 / 1 \text{ man * day}$)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

32. Construction / Demolition

32.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Aircraft improvements would occur from July 2025 through December 2025.

Airfield improvements would occur on an area totaling approximately 720,000 square feet. Improvements would begin in July 2025 and last approximately 6 months.

- Activity Start Date

Start Month:	7
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.157002
SO _x	0.001830
NO _x	0.775266
CO	1.040129
PM 10	0.041883

Pollutant	Total Emissions (TONs)
PM 2.5	0.041779
Pb	0.000000
NH ₃	0.000618
CO ₂ e	182.3

32.1 Paving Phase

32.1.1 Paving Phase Timeline Assumptions

- Phase Start Date
 - Start Month:7Start Quarter:1Start Year:2025
- Phase Duration Number of Month: 6 Number of Days: 0

32.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 720000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8
Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

32.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

32.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{ll} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1/27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1/HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of a trim pad would occur from August 2025 through February 2026.

Excavation of existing pavement would occur on an area totaling approximately 20,523 square feet. Excavation would begin in August 2025 and last approximately 2 months.

Pavement for the new trim pad would be required for an area totaling approximately 20,523 square feet. Paving would begin in October 2025 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date Start Month: 8

Start Month: 2025

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.113845
SO _x	0.001880
NO _x	0.568786
CO	0.932186
PM 10	0.427134

Pollutant	Total Emissions (TONs)
PM 2.5	0.024167
Pb	0.000000
NH ₃	0.000596
CO ₂ e	179.1

33.1 Trenching/Excavating Phase

33.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1

Start Quarter:1Start Year:2025

- Phase Duration

Number of Month: 2 Number of Days: 0

33.1.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	20253
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)									
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC		
POVs	50.00	50.00	0	0	0	0	0		

33.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs) 20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day) ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

33.2 Paving Phase

33.2.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:	10
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 5 Number of Days: 0

33.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 20253
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)

VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

34. Heating

34.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating for New Facilities

- Activity Description:

Heating for new facilities would begin following construction. For the purposes of this analysis, heating was assumed to required starting in January 2029. Heating would be required for the following facilities: GBTS Facility - 33,000 square feet UMT Facility - 12,000 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 4,000 square feet

Total ares to be heated - 73,111 square feet

- Activity Start Date Start Month: 1 Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.014227
SO _x	0.001552
NO _x	0.258674
CO	0.217286
PM 10	0.019659

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.019659
Pb	0.000000
NH ₃	0.000000
CO ₂ e	311.4

34.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): Type of fuel: Type of boiler/furnace: Heat Value (MMBtu/ft³): Energy Intensity (MMBtu/ft²):

73111 Natural Gas Industrial (10 - 250 MMBtu/hr) 0.00105 0.0743

- Default Settings Used: Yes

- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

34.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

34.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL}=FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- b. Action Title: T-7A Recapitalization at Columbus AFB Alternative 3
- c. Project Number/s (if applicable):

d. Projected Action Start Date: 8 / 2024

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

Analysis Summary:

2024							
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR					
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	AREA						
VOC	0.205	250	No				
NOx	1.005	250	No				
СО	1.689	250	No				
SOx	0.004	250	No				
PM 10	0.284	250	No				
PM 2.5	0.035	250	No				
Pb	0.000	25	No				
NH3	0.001	250	No				
CO2e	397.5						

2025

2025				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	Y AREA			
VOC	1.069	250	No	
NOx	4.712	250	No	
СО	7.091	250	No	
SOx	0.017	250	No	
PM 10	8.445	250	No	
PM 2.5	0.182	250	No	
Pb	0.000	25	No	
NH3	0.004	250	No	
CO2e	1603.9			

2026

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY AREA			
VOC	1.819	250	No

NOx	7.205	250	No
СО	10.925	250	No
SOx	0.025	250	No
PM 10	0.623	250	No
PM 2.5	0.244	250	No
Pb	0.000	25	No
NH3	0.010	250	No
CO2e	2403.3		

2027

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	1.009	250	No
NOx	2.459	250	No
CO	4.117	250	No
SOx	0.009	250	No
PM 10	0.086	250	No
PM 2.5	0.086	250	No
Pb	0.000	25	No
NH3	0.003	250	No
CO2e	886.1		

2028

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	27.732	250	No
NOx	68.731	250	No
СО	-178.614	250	No
SOx	2.837	250	No
PM 10	-6.004	250	No
PM 2.5	-4.078	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	9854.5		

2029

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	55.307	250	No
NOx	165.405	250	No
CO	-586.455	250	No
SOx	5.580	250	No
PM 10	-18.392	250	No
PM 2.5	-12.624	250	No
Pb	0.000	25	No
NH3	0.006	250	No
CO2e	20129.2		

2030			
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	59.147	250	No
NOx	192.516	250	No
СО	-756.158	250	No
SOx	5.891	250	No
PM 10	-23.208	250	No
PM 2.5	-15.972	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	21521.5		

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	59.147	250	No
NOx	192.516	250	No
CO	-756.158	250	No
SOx	5.891	250	No
PM 10	-23.208	250	No
PM 2.5	-15.972	250	No
Pb	0.000	25	No
NH3	-0.010	250	No
CO2e	21521.5		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Clay, MS; Lowndes, MS; Monroe, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 8 / 2024

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Atily	rity List:	
	Activity Type	Activity Title
2.	Aircraft	2028 Add T-7As and LTOs
3.	Aircraft	2028 Add T-7A TGOs
4.	Aircraft	2028 Remove T-38C and LTOs
5.	Aircraft	2028 Remove T-38C TGOs
6.	Aircraft	2029 Add T-7As and LTOs
7.	Aircraft	2029 Add T-7A TGOs
8.	Aircraft	2029 Remove T-38C and LTOs
9.	Aircraft	2029 Remove T-38C TGOs
10.	Aircraft	2030 Add T-7As and LTOs
11.	Aircraft	2030 Remove T-38C and LTOs
12.	Aircraft	2030 Remove T-38C TGOs
13.	Aircraft	2028 T-7A Increase Trim Test and Test Cell
14.	Aircraft	2028 T-38C Decrease Trim Test and Test Cell
15.	Aircraft	2029 T-7A Increase Trim Test and Test Cell
16.	Aircraft	2029 T-38C Decrease Trim Test and Test Cell
17.	Aircraft	2030 T-7A Increase Trim Test and Test Cell
18.	Aircraft	2030 T-38C Decrease Trim Test and Test Cell
19.	Personnel	Add 43 personnel
20.	Personnel	Remove 74 personnel
21.	Aircraft	2030 Add T-7A TGOs
22.	Construction / Demolition	MILCON: Construct GBTS Facility
23.	Construction / Demolition	MILCON: Construct UMT Facility
24.	Construction / Demolition	MILCON: Construct Hush House
25.	Construction / Demolition	MILCON: Construct Aircraft Shelters
26.	Construction / Demolition	MILCON: Addition to Egress Shop
27.	Construction / Demolition	MILCON: Construct Jet Blast Deflectors
28.	Construction / Demolition	FSRM: Renovate Building 452 (Hangar 3)
29.	Construction / Demolition	FSRM: Wash Rack Renovation
30.	Construction / Demolition	FSRM: Antenna Farm
31.	Construction / Demolition	FSRM: Squadron Operations Buildings Renovations
32.	Construction / Demolition	FSRM: Airfield Improvements
33.	Construction / Demolition	FSRM: Trim Pad
34.	Heating	Heating for New Facilities

- Activity List:

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7As and LTOs
- Activity Description:

Starting in 2028, add 37 T-7As and increase LTOs by 6,379.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	43.845373
SO _x	2.016759
NO _x	20.514886
СО	88.984504
PM 10	0.537933

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.477982
Pb	0.000000
NH ₃	0.000000
CO ₂ e	6094.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

Pollutant	Emissions Per Year (TONs)		
VOC	43.845373		
SO _x	2.016759		
NO _x	20.514886		
CO	88.984504		
PM 10	0.537933		

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.477982
Pb	0.000000
NH ₃	0.000000
CO ₂ e	6094.2

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	37
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	6379
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Add T-7A TGOs
- Activity Description: Starting in 2028, increase T-7A TGOs by 14,034.
- Activity Start Date Start Month: 1 Start Year: 2028
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	6.627546
SO _x	3.519206
NO _x	50.175959
CO	7.322293
PM 10	0.378546

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.320309
Pb	0.000000
NH ₃	0.000000
CO ₂ e	10716.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	P
VOC	6.627546	PM
SO _x	3.519206	Pb
NO _x	50.175959	NH ₃
CO	7.322293	CO ₂
PM 10	0.378546	

a Al Oj partj.		
Pollutant	Emissions Per Year (TONs)	
PM 2.5	0.320309	
Pb	0.000000	
NH ₃	0.000000	
CO ₂ e	10716.0	

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	37
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	14034
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

0
0
0
3.56
0
0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 Remove T-38C and LTOs

- Activity Description:

Starting in 2028, remove 23 T-38Cs and decrease LTOs by 5,889.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
СО	-226.520932
PM 10	-5.555029

Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

Pollutant	Emissions Per Year (TONs)
VOC	-21.206061
SO _x	-1.874064
NO _x	-3.858114
CO	-226.520932
PM 10	-5.555029

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-4.440584
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-4760.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

Flight Operations	
Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	5889
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	_	
-	LTO			

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----------------	----	-------	--------	-------------------

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 Remove T-38C TGOs

- Activity Description: Starting in 2028, decrease T-38C TGOs by 12,956.

- Activity Start Date Start Month:

Start N	lonth:	1
Start Y	ear:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)			
VOC	-2.201160			
SO _x	-0.847209			
NO _x	-0.554249			
CO	-51.521407			
PM 10	-1.417294			

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.546331
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-2560.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (IONS)		Pollutant	Emissions Per Year (TONS)
VOC	-2.201160		PM 2.5	-0.546331
SO _x	-0.847209		Pb	0.000000
NO _x	-0.554249	-	NH ₃	0.000000
СО	-51.521407		CO ₂ e	-2560.6

|--|

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used: No				
- Flight Operations TIMs (T	'ime In Mode)			
Taxi/Idle Out [Idle] (mins): 0				
Takeoff [Military] (mins):		0		
Takeoff [After Burn] (mins): 0		0		
Climb Out [Intermediat	Climb Out [Intermediate] (mins): 3.56			
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (mins	Taxi/Idle In [Idle] (mins):0			
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins):	9			
AfterBurn (mins):	3			

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60)^{*} (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----	----	-------	--------	-------------------

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Add T-7As and LTOs

- Activity Description:

Starting in 2029, add 31 T-7As and increase LTOs by 9,417.

- Activity Start Date Start Month: 1 Start Year: 2029
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	64.726741
SO _x	2.977240
NO _x	30.285105
СО	131.363392
PM 10	0.794124

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.705622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	8996.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	64.726741	PM 2.5	0.705622
SO _x	2.977240	Pb	0.000000
NO _x	30.285105	NH ₃	0.000000
CO	131.363392	CO ₂ e	8996.6
PM 10	0.794124		

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	31
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	9417
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (10/11)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Add T-7A TGOs
- Activity Description: Starting in 2029, increase T-7A TGOs by 20,717.
- Activity Start Date

Start Month:1Start Year:2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	9.783588	Р	M 2.5	0.472840
SO _x	5.195054	Р	'b	0.000000
NO _x	74.069783	N	JH3	0.000000
СО	10.809174	C	CO ₂ e	15818.9
PM 10	0.558811			

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	9.783588	PM 2.5	0.472840

SO _x	5.195054
NO _x	74.069783
СО	10.809174
PM 10	0.558811

Pb	0.000000
NH ₃	0.000000
CO ₂ e	15818.9

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft:		31
Number of Annual LT	Os (Landing and Take-off) cycles for all Aircraft:	20717
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
-------------	--

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2029 Remove T-38C and LTOs

- Activity Description:

Starting in 2029, remove 45 T-38Cs and decrease LTOs by 11,521.

- Activity Start Date

Start Month: 1 Start Year: 2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-41.486675
SO _x	-3.666342
NO _x	-7.547858
СО	-443.156335
PM 10	-10.867632

Pollutant	Emissions Per Year (TONs)
PM 2.5	-8.687378
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-9313.3

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-41.486675	PM 2.5	-8.687378
SO _x	-3.666342	Pb	0.000000
NO _x	-7.547858	NH ₃	0.000000
CO	-443.156335	CO ₂ e	-9313.3
PM 10	-10.867632		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234

Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		45
Number of Annual L	Os (Landing and Take-off) cycles for all Aircraft:	11521
Number of Annual TO	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46
Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs)

AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----------------	----	-------	--------	-------------------

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 Remove T-38C TGOs
- Activity Description: Starting in 2029, decrease T-38C TGOs by 25,346.
- Activity Start Date

Start Month:	1
Start Year:	2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-4.306160
SO _x	-1.657407
NO _x	-1.084285
СО	-100.792034
PM 10	-2.772672

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.068795
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-5009.4

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-4.306160	PM 2.5	-1.068795
SO _x	-1.657407	Pb	0.000000
NO _x	-1.084285	NH ₃	0.000000
СО	-100.792034	CO ₂ e	-5009.4
PM 10	-2.772672		

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

9.2 Aircraft & Engines

9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
0	

- Aircraft & Engine Surrogate	
Is Aircraft & Engine a Surrogate?	No
Original Aircraft Name:	
Original Engine Name:	

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

The chart of Englise Emissions Factors (16/100016 Factor)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	25346
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

	<i>c)</i> =====		·)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7As and LTOs
- Activity Description: Starting in 2030, add 9 T-7As and increase LTOs by 2,734.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)	
VOC	18.791856	
SO _x	0.864370	
NO _x	8.792553	
СО	38.138209	
PM 10	0.230555	

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.204860
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2612.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	18.791856	PM 2.5	0.204860
SO _x	0.864370	Pb	0.000000
NO _x	8.792553	NH ₃	0.000000
СО	38.138209	CO ₂ e	2612.0
PM 10	0.230555		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	2734
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	8.475
Takeoff [Military] (mins):	0.73
Takeoff [After Burn] (mins):	0.01
Climb Out [Intermediate] (mins):	0.42
Approach [Approach] (mins):	4.03
Taxi/Idle In [Idle] (mins):	8.475
Takeoff [Military] (mins): Takeoff [After Burn] (mins): Climb Out [Intermediate] (mins): Approach [Approach] (mins):	0.73 0.01 0.42 4.03

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs)

AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)	- Auxiliary	Power	Unit ((APU)	Emission	Factor ((lb/hr))
--	-------------	-------	--------	-------	----------	----------	---------	---

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 Remove T-38C and LTOs
- Activity Description:

Starting in 2030, remove 17 T-38Cs and decrease LTOs by 4,353.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-15.674985
SO _x	-1.385260
NO _x	-2.851821

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.282368
Pb	0.000000
NH ₃	0.000000

СО	-167.438549
PM 10	-4.106137

CO ₂ e	-3518.9	

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-15.674985
SO _x	-1.385260
NO _x	-2.851821
CO	-167.438549
PM 10	-4.106137

Pollutant	Emissions Per Year (TONs)
PM 2.5	-3.282368
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3518.9

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

Flight Operations

 Number of Aircraft:
 Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:
 Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:
 Number of Annual Trim Test(s) per Aircraft:
 0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	9.175
Takeoff [Military] (mins):	0.22
Takeoff [After Burn] (mins):	0.52
Climb Out [Intermediate] (mins):	0.46

Approach [Approach] (mins):	3.91
Taxi/Idle In [Idle] (mins):	9.175

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
-	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Remove T-38C TGOs
- Activity Description: Starting in 2030, decrease T-38C TGOs by 9,577.
- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-1.627085
SO _x	-0.626252
NO _x	-0.409698
СО	-38.084325
PM 10	-1.047655

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.403845
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1892.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	-1.627085	P	M 2.5	-0.403845
SO _x	-0.626252	P	b	0.000000
NO _x	-0.409698	N	H ₃	0.000000
СО	-38.084325	С	O ₂ e	-1892.8
PM 10	-1.047655			

12.2 Aircraft & Engines

12.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
C C	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name:

3234

Original Engine Name:

12.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & E	- Aircraft & Engine Emissions Factors (lb/1000lb fuel)							
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	

17

12.3 Flight Operations

12.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	9577
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines LTO: Number of Landing and Take-off Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	1,10,44							

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 T-7A Increase Trim Test and Test Cell
- Activity Description: Starting in 2028, add trim test and engine test cell for 37 T-7As.

- Activity Start Date Start Month: 1 Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.391079
SO _x	0.127359
NO _x	2.173229
CO	6.709290
PM 10	0.152567

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.136819
Pb	0.000000
NH ₃	0.000000
CO ₂ e	384.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.213430
SO _x	0.070029
NO _x	1.163420
CO	3.384981
PM 10	0.077801

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.177649
SO _x	0.057330
NO _x	1.009809
CO	3.324309
PM 10	0.074765

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine
------------	---	--------

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	37
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	1

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.069716
Pb	0.000000
NH ₃	0.000000
CO ₂ e	211.7

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.067103
Pb	0.000000
NH ₃	0.000000
CO ₂ e	173.3

- Delauti Settings Oseu.	NO	
- Flight Operations TIMs (1	Time In Mode)	
Taxi/Idle Out [Idle] (mi	ins):	6.8
Takeoff [Military] (min	s):	0.25
Takeoff [After Burn] (n	nins):	0.25
Climb Out [Intermedia	1.4	
Approach [Approach] (4	
Taxi/Idle In [Idle] (min	s):	4.4
- Trim Test		
Idle (mins):		
Approach (mins):	4.97	
Intermediate (mins):	10.45	

No

13.3.2 Flight Operations Formula(s)

- Default Settings Used.

Military (mins):

AfterBurn (mins):

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

6.14

2.04

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

- Auxiliary Power Unit (APU) (default)

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

$APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13.5 Aircraft Engine Test Cell

13.5.1 Aircraft Engine Test Cell Assumptions

 Engine Test Cell Total Number of Aircraft Engines Tested Annually: 37

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

13.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

13.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 T-38C Decrease Trim Test and Test Cell

- Activity Description:

Starting in 2028, remove trim test and engine test cell for 23 T-38Cs.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.441333
SO _x	-0.107957
NO _x	-0.314704
СО	-5.605788
PM 10	-0.118552

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.044035
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-326.3

Pollutant

Emissions Per Year (TONs)

-0.019822 0.000000

0.000000

-164.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollu
VOC	-0.210261		PM 2.5
SO _x	-0.054556		Pb
NO _x	-0.155328		NH ₃
CO	-2.774568		CO ₂ e
PM 10	-0.058050		

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.231073
SO _x	-0.053401
NO _x	-0.159375
СО	-2.831220
PM 10	-0.060502

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.024212
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.4

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
C	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	23
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test Idle (mins): 0 Approach (mins): 4.97 Intermediate (mins): 10.45 Military (mins): 6.14 AfterBurn (mins): 2.04

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
•	LTO			

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

	e) Emission	1 40001 (10	·					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14.5 Aircraft Engine Test Cell

14.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	46

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

14.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

14.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

 $TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000$

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 T-7A Increase Trim Test and Test Cell
- Activity Description: Starting in 2029, add trim test and engine test cell for 31 T-7As.
- Activity Start Date Start Month: 1 Start Year: 2029
- Activity End Date Indefinite: Yes End Month: N/A

End Year: N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.327661
SO _x	0.106706
NO _x	1.820814
СО	5.621297
PM 10	0.127826

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.114632
Pb	0.000000
NH ₃	0.000000
CO ₂ e	322.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.178820
SO _x	0.058673
NO _x	0.974757
CO	2.836065
PM 10	0.065185

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.148841
SO _x	0.048033
NO _x	0.846056
CO	2.785232
PM 10	0.062641

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.058410
Pb	0.000000
NH ₃	0.000000
CO ₂ e	177.3

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.056222
Pb	0.000000
NH ₃	0.000000
CO ₂ e	145.2

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Oper	ations
Number	of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	6.8
Takeoff [Military] (mins):	0.25
Takeoff [After Burn] (mins):	0.25
Climb Out [Intermediate] (mins):	1.4
Approach [Approach] (mins):	4
Taxi/Idle In [Idle] (mins):	4.4

- Trim Test	
Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60)^{*} (FC / 1000)^{*} EF^{*} NE^{*} LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines LTO: Number of Landing and Take-off Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines TGO: Number of Touch-and-Go Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr)

2000: Conversion Factor pounds to tons

15.5 Aircraft Engine Test Cell

15.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 31

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

15.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

15.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs)

TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2029 T-38C Decrease Trim Test and Test Cell

- Activity Description:

Starting in 2029, remove trim test and engine test cell for 45 T-38Cs.

- Activity Start Date

Start Month:1Start Year:2029

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.863478
SO _x	-0.211221
NO _x	-0.615725
CO	-10.967846
PM 10	-0.231950

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.086155
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-638.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.411379
SO _x	-0.106740
NO _x	-0.303903
СО	-5.428503
PM 10	-0.113576

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.038783
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-322.6

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.452098
SO _x	-0.104481
NO _x	-0.311821
CO	-5.539343
PM 10	-0.118374

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.047372
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-315.8

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- All chart & Engline Enhission's Factor's (10/100010 fuer)								
	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	45
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	3

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	12.8
Takeoff [Military] (mins):	0.2
Takeoff [After Burn] (mins):	0.2
Climb Out [Intermediate] (mins):	0.9
Approach [Approach] (mins):	3.8
Taxi/Idle In [Idle] (mins):	6.4

- Trim Test

0
4.97
10.45
6.14
2.04

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	I'IUW							

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16.5 Aircraft Engine Test Cell

16.5.1 Aircraft Engine Test Cell Assumptions

```
    Engine Test Cell
    Total Number of Aircraft Engines Tested Annually: 90
```

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)

Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

16.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

16.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

 $TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000$

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCellPS_{IDLE} + TestCellPS_{APPROACH} + TestCellPS_{INTERMEDIATE} + TestCellPS_{MILITARY} + TestCellPS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location
 County: Clay, MS; Lowndes, MS; Monroe, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 T-7A Increase Trim Test and Test Cell
- Activity Description: Starting in 2030, add trim test and engine test cell for 9 T-7As.
- Activity Start Date Start Month: 1 Start Year: 2030

PM 2.5

Pb

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.095127
SO _x	0.030979
NO _x	0.528623
СО	1.631989
PM 10	0.037111

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.033280
Pb	0.000000
NH ₃	0.000000
CO ₂ e	93.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]: Pollutant Emissions Per Year (TONs) Pollutant

Pollutant	Emissions Per Year (TONs)
VOC	0.051916
SO _x	0.017034
NO _x	0.282994
CO	0.823374
PM 10	0.018925

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)			
VOC	0.043212			
SO _x	0.013945			
NO _x	0.245629			
СО	0.808616			
PM 10	0.018186			

Pollutant	Emissions Per Year (TONs)
CO ₂ e	51.5
CO	51.5
NH ₃	0.000000
10	0.000000

Emissions Per Year (TONs)

0.016958

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.016322
Pb	0.000000
NH ₃	0.000000
CO ₂ e	42.1

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	6.8	
Takeoff [Military] (mins):	0.25	
Takeoff [After Burn] (mins):	0.25	
Climb Out [Intermediate] (mins):	1.4	
Approach [Approach] (mins):	4	
Taxi/Idle In [Idle] (mins):	4.4	

- Trim Test	
Idle (mins):	0
Approach (mins):	4.97
Intermediate (mins):	10.45
Military (mins):	6.14
AfterBurn (mins):	2.04

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

17.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

17.5 Aircraft Engine Test Cell

17.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell	
Total Number of Aircraft Engines Tested Annually:	9

- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	1 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

17.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

17.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCell PS_{IDLE} + TestCell PS_{APPROACH} + TestCell PS_{INTERMEDIATE} + TestCell PS_{MILITARY} + TestCell PS_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Clay, MS; Lowndes, MS; Monroe, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C Decrease Trim Test and Test Cell

- Activity Description:

Starting in 2030, remove trim test and engine test cell for 17 T-38Cs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	-0.326203				
SO _x	-0.079795				
NO _x	-0.232607				
СО	-4.143408				
PM 10	-0.087626				

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.032548
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-241.2

Emissions Per Year (TONs)

-0.014651

 $\frac{0.000000}{0.000000}$

-121.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]: Pollutant Emissions Per Year (TONs) Pollutant

Pollutant	Emissions Per Year (TONs)
VOC	-0.155410
SO _x	-0.040324
NO _x	-0.114808
СО	-2.050768
PM 10	-0.042906

- Activity Emissions [Test Cell part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.170793
SO _x	-0.039470
NO _x	-0.117799

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017896
Pb	0.000000
NH ₃	0.000000

PM 2.5

Pb

NH₃

 CO_2e

СО	-2.092641
PM 10	-0.044719

CO ₂ e	-119.3

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	8							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

	s (Touch-and-	l Take-off) cycles for all Aircraft: Go) cycles for all Aircraft: rcraft:	17 0 0 3
- Default Settings Used:	No		
- Flight Operations TIMs (T	ime In Mode)		
Taxi/Idle Out [Idle] (mir	ns):	12.8	
Takeoff [Military] (mins	s):	0.2	
Takeoff [After Burn] (m	ins):	0.2	
Climb Out [Intermediat	e] (mins):	0.9	
Approach [Approach] (1	nins):	3.8	
Taxi/Idle In [Idle] (mins):	6.4	
- Trim Test			
Idle (mins):	0		
Approach (mins):	4.97		
Intermediate (mins):	10.45		
Military (mins):	6.14		

AfterBurn (mins): 2.04

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesNA: Number of AircraftNTT: Number of Trim Test2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18.5 Aircraft Engine Test Cell

18.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell Total Number of Aircraft Engines Tested Annually: 34
- Default Settings Used: Yes

- Annual Run-ups / Test Durations	
Annual Run-ups (Per Aircraft Engine):	3 (default)
Idle Duration (mins):	0 (default)
Approach Duration (mins):	12 (default)
Intermediate Duration (mins):	0 (default)
Military Duration (mins):	8 (default)
After Burner Duration (mins):	2 (default)

18.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

18.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TestCellPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * ARU / 2000

TestCellPS_{POL}: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

- Aircraft Engine Test Cell Emissions per Year

 $TestCell P S_{IDLE} + TestCell P S_{APPROACH} + TestCell P S_{INTERMEDIATE} + TestCell P S_{MILITARY} + TestCell P S_{AFTERBURN}$

TestCell: Aircraft Engine Test Cell Emissions (TONs) TestCellPS_{IDLE}: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS_{APPROACH}: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs) TestCellPS_{INTERMEDIATE}: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs) TestCellPS_{MILITARY}: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS_{AFTERBURN}: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

19. Personnel

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

 Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Add 43 personnel

- Activity Description:

Addition of 43 personnel during the T-7A and T-38C transition period. Conservatively assumed all personnel commute daily.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	No
End Month:	12
End Year:	2029

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.190336
SO _x	0.001295
NO _x	0.163202
CO	2.164712
PM 10	0.003741

Pollutant	Total Emissions (TONs)
PM 2.5	0.003415
Pb	0.000000
NH ₃	0.011726
CO ₂ e	186.2

19.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	43
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule

Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

19.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

19.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132

LDDT	000.233	000.004	000.371	004.384	000.007	000.006	0	800.000	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150	0	000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023	0	000.054	00393.696

19.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year $VMT_P = NP \ * \ WD \ * \ AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

20. Personnel

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: Remove 74 personnel

- Activity Description:

Net decrease of 74 personnel following T-7A arrival and T-38C withdrawal. Conservatively assumed all personnel commute daily.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.163778
SO _x	-0.001114
NO _x	-0.140430
СО	-1.862659
PM 10	-0.003219

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002938
Pb	0.000000
NH ₃	-0.010089
CO ₂ e	-160.2

20.2 Personnel Assumptions

- Number of Personnel	
Active Duty Personnel:	74
Civilian Personnel:	0
Support Contractor Personnel:	0
Air National Guard (ANG) Personnel:	0
Reserve Personnel:	0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule

Active Duty Personnel:	5 Days Per Week (default)
Civilian Personnel:	5 Days Per Week (default)
Support Contractor Personnel:	5 Days Per Week (default)
Air National Guard (ANG) Personnel:	4 Days Per Week (default)
Reserve Personnel:	4 Days Per Month (default)

20.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	37.55	60.32	0	0.03	0.2	0	1.9
GOVs	54.49	37.73	4.67	0	0	3.11	0

20.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

20.5 Personnel Formula(s)

- Personnel Vehicle Miles Travel for Work Days per Year $VMT_P = NP \mbox{ * } WD \mbox{ * } AC$

VMT_P: Personnel Vehicle Miles Travel (miles/year) NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

- Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$

VMT_{Total}: Total Vehicle Miles Travel (miles)
 VMT_{AD}: Active Duty Personnel Vehicle Miles Travel (miles)
 VMT_C: Civilian Personnel Vehicle Miles Travel (miles)
 VMT_{SC}: Support Contractor Personnel Vehicle Miles Travel (miles)
 VMT_{ANG}: Air National Guard Personnel Vehicle Miles Travel (miles)
 VMT_{AFRC}: Reserve Personnel Vehicle Miles Travel (miles)

- Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{Total}: Total Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Personnel On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 Add T-7A TGOs
- Activity Description: Starting in 2030, increase T-7A TGOs by 6,015.
- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.840579
SO _x	1.508339
NO _x	21.505515
CO	3.138349
PM 10	0.162246

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137285
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4592.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	2.840579
SO _x	1.508339
NO _x	21.505515
CO	3.138349
PM 10	0.162246

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137285
Pb	0.000000
NH ₃	0.000000
CO ₂ e	4592.9

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	6015
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	0
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	3.56

0 0

Approach [Approach] (mins): Taxi/Idle In [Idle] (mins):

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21.4 Auxiliary Power Unit (APU)

21.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

21.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

21.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

22. Construction / Demolition

22.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct GBTS Facility

- Activity Description:

Construction of the GBTS Facility (33,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 3.65 acres (159,000 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 300 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new GBTS facility would total approximately 33,000 square feet. The height of the GBTS facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 33,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways, parking areas, and roadways would occur on an area totaling approximately 2.75 acres (120,000 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

The analysis assumes the following: (1) no new emergency generators, or if any were needed for new facilities, their emissions would be offset by removing generators that were supporting T-38C operations; (2) for special vehicles and non-road combustion equipment needed to support T-7A operations/facilities, their operation/emissions would be equally offset by eliminating or reusing vehicles and non-road equipment that were supporting T-38C operations; and (3) T-7A fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the T-38C operations.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.951152
SO _x	0.010236
NO _x	3.131076

Pollutant	Total Emissions (TONs)
PM 2.5	0.113029
Pb	0.000000
NH ₃	0.002861

СО	4.538396	CO ₂ e	989.0
PM 10	6.458026		

22.1 Site Grading Phase

22.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 4 Number of Days: 0

22.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	159000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Graders Composite	1	8
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	8
Tractors/Loaders/Backhoes Composite	2	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89		
Other Construction Equipment Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60		
Rubber Tired Dozers Composite										
	VOC SO _x NO _x CO PM 10 PM 2.5 CH ₄ CO ₂ e									
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NOx	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

22.2 Trenching/Excavating Phase

22.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 2 Number of Days: 0

22.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	900
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

-

- Vehicle Exhaust Vehicle Mixture (%)										
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC			
POVs	0	0	0	0	0	100.00	0			

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composi	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

22.3 Building Construction Phase

22.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:1Start Quarter:1Start Year:2026

_	Phase	Durs	ation
_	1 mase	Dur	auton

Number of Month: 18 Number of Days: 0

22.3.2 Building Construction Phase Assumptions

- General Building Construction Information

Office or Industrial
33000
15
N/A

- Building Construction Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

22.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77			
Forklifts Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e			

Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Generator Sets Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057				
Tractors/Loaders/Backhoes Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				
Welders Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

22.4 Architectural Coatings Phase

22.4.1 Architectural Coatings Phase Timeline Assumptions

```
- Phase Start Date
Start Month: 6
Start Quarter: 1
Start Year: 2027
```

- Phase Duration Number of Month: 1 Number of Days: 0

22.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 33000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

		ion i actor							
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

22.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

22.5 Paving Phase

22.5.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 7

Start Quarter:	1
Start Year:	2027

- Phase Duration

Number of Month: 2 Number of Days: 0

22.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 120000
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Paving Equipment Composite	2	6
Rollers Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

22.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89				
Other Construction Equipment Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60				
Rubber Tired Dozen	s Composi	te										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45				
Tractors/Loaders/B	ackhoes Co	mposite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- venicie E		worker In	he runsen	II Factors (g	grams/mme)			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

22.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

23. Construction / Demolition

23.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct UMT Facility

- Activity Description:

Construction of the UMT Facility (12,000 square feet) would occur from July 2025 through August 2027.

Site grading would occur on an area of approximately 0.75 acres (32,500 square feet). Site grading would begin in July 2025 and last approximately 4 months.

Trenching for site utilities would require approximately 500 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 2 months.

Construction of the new UMT facility would total approximately 12,000 square feet. The height of the UMT facility was assumed to be 15 feet. Construction would begin in January 2026 and last approximately 18 months.

Architectural coatings would be applied to the facility, totaling 312,000 square feet. Architectural coating application would begin in June 2027 and last approximately 1 month.

Paving for driveways and roadways would occur on an area totaling approximately 0.2 acres (8,750 square feet). Paving would begin July 2027 and last approximately 2 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date Start Month: 7

Start Month: 2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2027

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.474579
SO _x	0.006568
NO _x	1.680257
СО	2.695038
PM 10	1.382261

Pollutant	Total Emissions (TONs)
PM 2.5	0.059107
Pb	0.000000
NH ₃	0.001602
CO ₂ e	636.1

23.1 Site Grading Phase

23.1.1 Site Grading Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 4 Number of Days: 0

23.1.2 Site Grading Phase Assumptions

- General Site Grading Information	
Area of Site to be Graded (ft ²):	32500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Site Grading Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Graders Composite	1	6
Other Construction Equipment Composite	1	8
Rubber Tired Dozers Composite	1	6
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	0	0	0	0	0	100.00	0	

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.1.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozen	s Composit	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

		· or mer i rr							
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.1.4 Site Grading Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³)

HAOnsite: Amount of Material to be Hauled Off-Site (yd³) HAOnffSite: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)

HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.2 Trenching/Excavating Phase

23.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 2 Number of Days: 0

23.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	1500
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³):20 (default)Average Hauling Truck Round Trip Commute (mile):20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.2.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite												
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89				
Other Construction Equipment Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60				
Rubber Tired Dozers Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872				

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.2.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres) WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ Vehicle \ Emissions (TONs) \\ VMT_{VE}: \ Vehicle \ Exhaust \ Vehicle \ Miles \ Travel (miles) \\ 0.002205: \ Conversion \ Factor \ grams \ to \ pounds \\ EF_{POL}: \ Emission \ Factor \ for \ Pollutant \ (grams/mile) \\ VM: \ Vehicle \ Exhaust \ On \ Road \ Vehicle \ Mixture \ (\%) \\ 2000: \ Conversion \ Factor \ pounds \ to \ tons \end{array}$

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

23.3 Building Construction Phase

23.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	1
Start Quarter:	1
Start Year:	2026
- Phase Duration	
Number of Mor	111: 18
Number of Day	s: 0

23.3.2 Building Construction Phase Assumptions

General Building Construction Information Building Category: Office or Industrial Area of Building (ft²): 12000 Height of Building (ft): 15 Number of Units: N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

23.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77

Forklifts Composite											
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e			
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449			
Tractors/Loaders/Backhoes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e			
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872			

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

23.4 Architectural Coatings Phase

23.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 6 Start Quarter: 1 Start Year: 2027

- Phase Duration Number of Month: 1 Number of Days: 0

23.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 12000 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

23.4.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

23.5 Paving Phase

23.5.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 7 Start Quarter: 1 Start Year: 2027

- Phase Duration

Number of Month:	2
Number of Days:	0

23.5.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 8750
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

23.5.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Graders Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0676	0.0014	0.3314	0.5695	0.0147	0.0147	0.0061	132.89
Other Construction	Equipment	t Composite	e					
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0442	0.0012	0.2021	0.3473	0.0068	0.0068	0.0039	122.60
Rubber Tired Dozer	s Composit	te						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572

HDGV	000.724	000.005	000.965	014.725	000.017	000.015	000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004	000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006	000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150	000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023	000.054	00393.696

23.5.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

24. Construction / Demolition

24.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Hush House

- Activity Description:

Construction of the Hush House (24,111 square feet) would occur from November 2025 through November 2026.

Trenching to extend site utilities would require approximately 100 feet of excavation. A 3-foot trench width for utilities was assumed. Trenching would begin in November 2025 and last approximately 1 month.

Construction of the new Hush House would total approximately 24,111 square feet. The height of the Hush House was assumed to be 20 feet. Construction would begin in December 2025 and last approximately 12 months.

Architectural coatings would be applied to the facility, totaling 24,111 square feet. Architectural coating application would begin in November 2026 and last approximately 1 month.

Paving for approach pavements would occur on an area totaling approximately 300 square feet. Paving would begin November 2026 and last approximately 1 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.558724
SO _x	0.005128
NO _x	1.550784
СО	2.357436

Pollutant	Total Emissions (TONs)
PM 2.5	0.053680
Pb	0.000000
NH ₃	0.001724
CO ₂ e	492.5

PM 10		0.056807					
24.1 Trencl	hing/Excavati	ing Phase					
24.1.1 Tren	ching / Excav	vating Phase Ti	meline A	ssumptions			
- Phase Start Start Mo Start Qu Start Yea	onth: 11 arter: 1						
- Phase Dura Number Number	of Month: 1						
24.1.2 Tren	ching / Excav	vating Phase As	sumptio	ns			
Area of S Amount	Site to be Tren of Material to	ating Informatio ched/Excavated (be Hauled On-Si be Hauled Off-Si	(ft ²): te (yd ³):	300 0 0			
Default S Average	Default Setting Settings Used: Day(s) worked	Y I per week: 5	es (default)				
- Constructio	on Exhaust (dei Ec	fault) quipment Name			Number O	f Hou	rs Per Day
		1 P			Equipmen		,
					2		
Excavators C		. ~ .					8
Other Generation	al Industrial Eq	uipmen Composit	e		1		8
Other Generation			e				
Other Genera Tractors/Loa - Vehicle Exh Average Average	al Industrial Eq aders/Backhoes naust Hauling Trucl Hauling Trucl	Composite k Capacity (yd ³): k Round Trip Co		20 (def nile): 20 (def	1 1 Cault)		8
Other Genera Tractors/Loa - Vehicle Exh Average Average	al Industrial Eq aders/Backhoes naust Hauling Truck Hauling Truck naust Vehicle M	Composite k Capacity (yd³): k Round Trip Co Aixture (%)	mmute (n	nile): 20 (def	1 1 Cault) Cault)	HDDV	8 8
Other Genera Tractors/Loa - Vehicle Exh Average Average - Vehicle Exh	al Industrial Eq aders/Backhoes Haust Hauling Truck Hauling Truck aust Vehicle M LDGV	Composite k Capacity (yd ³): k Round Trip Co /ixture (%) LDGT	mmute (n HDGV	nile): 20 (def	1 1 fault) fault)	HDDV 100.00	8 8 MC
Other Genera Tractors/Loa - Vehicle Exh Average Average - Vehicle Exh POVs - Worker Tri	al Industrial Eq aders/Backhoes Haust Hauling Truch Hauling Truch LDGV 0	Composite k Capacity (yd³): k Round Trip Co Aixture (%)	mmute (n HDGV 0	nile): 20 (def	1 1 Cault) Cault)	HDDV 100.00	8 8
Other Genera Tractors/Loa - Vehicle Exh Average Average - Vehicle Exh POVs - Worker Tri Average	al Industrial Eq aders/Backhoes Haust Hauling Truck Hauling Truck aust Vehicle M LDGV 0 ps Worker Round ps Vehicle Mix	Composite k Capacity (yd ³): k Round Trip Co /lixture (%) LDGT 0 d Trip Commute xture (%)	mmute (n HDGV 0	nile): 20 (def LDDV 0 20 (default)	1 1 Cault) Cault)	100.00	8 8 8 0
Other Genera Tractors/Loa - Vehicle Exh Average Average - Vehicle Exh POVs - Worker Tri Average	al Industrial Eq aders/Backhoes Hauling Truch Hauling Truch Hauling Truch LDGV 0 ps Worker Round	Composite k Capacity (yd ³): k Round Trip Co /lixture (%) LDGT 0 d Trip Commute	mmute (n HDGV 0	nile): 20 (def	1 1 fault) fault) LDDT		8 8 MC

24.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

VOC SO _x NO _x CO PM 10 PM 2.5 Pb NH ₃ CO ₂ e	VOC S	SO _x NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e

LDGV	000.597	000.007	000.639	005.101	000.011	000.009	000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010	000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023	000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006	000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007	000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334	000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024	 000.050	00392.901

24.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

24.2 Building Construction Phase

24.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:12Start Quarter:1Start Year:2025

- Phase Duration Number of Month: 12 Number of Days: 0

24.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	24111
Height of Building (ft):	20
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

24.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite		·		·						
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite	Forklifts Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Com	posite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

						/			
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

24.3 Architectural Coatings Phase

24.3.1 Architectural Coatings Phase Timeline Assumptions

11
1
2026

- Phase Duration Number of Month: 1 Number of Days: 0

24.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 24111 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

24.3.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

24.4 Paving Phase

24.4.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 11 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

24.4.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 300
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

24.4.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

24.4.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

25. Construction / Demolition

25.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Aircraft Shelters

- Activity Description:

Construction of 58 aircraft shelters (sunshades) would occur from November 2025 through November 2026.

Demolition would be required for the existing T-38C shelters. Demolition would include removal of approximately 68 sunshades totaling approximately 180,000 square feet. Demolition would begin in November 2025 and last approximately 6 months.

Construction would include installation of 58 sunshades totaling approximately 265,400 square feet. The height of all sunshades was assumed to be 15 feet. Construction would begin in May 2026 and last approximately 7 months.

- Activity Start Date

 Start Month:
 11

 Start Month:
 2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.279463
SO _x	0.005621

Pollutant	Total Emissions (TONs)
PM 2.5	0.059502
Pb	0.000000

NO _x	1.763321
CO	2.287696
PM 10	0.627799

NH ₃	0.003919
CO ₂ e	564.9

25.1 Demolition Phase

25.1.1 Demolition Phase Timeline Assumptions

- Phase Start Date Start Month:

Start Month:11Start Quarter:1Start Year:2025

- Phase Duration Number of Month: 6 Number of Days: 0

25.1.2 Demolition Phase Assumptions

- General Demolition Information
 Area of Building to be demolished (ft²): 180000
 Height of Building to be demolished (ft): 15
- Default Settings Used: Yes
- Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Concrete/Industrial Saws Composite	1	8
Rubber Tired Dozers Composite	1	1
Tractors/Loaders/Backhoes Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

25.1.3 Demolition Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Concrete/Industrial Saws Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e	

Emission Factors	0.0336	0.0006	0.2470	0.3705	0.0093	0.0093	0.0030	58.539		
Rubber Tired Dozers Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.1671	0.0024	1.0824	0.6620	0.0418	0.0418	0.0150	239.45		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.1.4 Demolition Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (0.00042 * BA * BH) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
0.00042: Emission Factor (lb/ft³)
BA: Area of Building to be demolished (ft²)
BH: Height of Building to be demolished (ft)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (1 / 27) * 0.25 * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building being demolish (ft²)
BH: Height of Building being demolish (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
0.25: Volume reduction factor (material reduced by 75% to account for air space)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

25.2 Building Construction Phase

25.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:	5
Start Quarter:	1
Start Year:	2026

- Phase Duration Number of Month: 7 Number of Days: 0

25.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	265400
Height of Building (ft):	15
Number of Units:	N/A

Building Construction Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	7
Forklifts Composite	2	7
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

25.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite	Forklifts Composite									
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Composite										
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/Backhoes Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

					· · · · · · · · · · · · · · · · · · ·	/			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

25.2.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

26. Construction / Demolition

26.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Addition to Egress Shop

- Activity Description:

Construction of the addition to the Egress Shop would occur from July 2026 through August 2028.

Construction of the Egress Shop addition would total approximately 4,000 square feet. The height of the addition was assumed to be 20 feet. Construction would begin in July 2026 and last approximately 25 months.

Architectural coatings would be applied to the addition, totaling 4,000 square feet. Architectural coating application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2026

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.289900
SO _x	0.005043
NO _x	1.163443
СО	2.124393
PM 10	0.036831

Pollutant	Total Emissions (TONs)
PM 2.5	0.036783
Pb	0.000000
NH ₃	0.001413
CO ₂ e	485.3

26.1 Building Construction Phase

26.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month:7Start Quarter:1Start Year:2026

- Phase Duration Number of Month: 25 Number of Days: 0

26.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	4000
Height of Building (ft):	20
Number of Units:	N/A

- Building Construction Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

26.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite	Cranes Composite											
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77				
Forklifts Composite												
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e				
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449				
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite											

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

26.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

26.2 Architectural Coatings Phase

26.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2028

- Phase Duration Number of Month: 1 Number of Days: 0

26.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 4000 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

26.2.3 Architectural Coatings Phase Emission Factor(s)

- WOIKCI	worker rings Emission Factors (grams/mile)									
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e	
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428	
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572	
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241	
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132	
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757	
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593	
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696	

- Worker Trips Emission Factors (grams/mile)

26.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

27. Construction / Demolition

27.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: MILCON: Construct Jet Blast Deflectors

- Activity Description:

Construction of the jet blast deflectors would occur from November 2025 through November 2026.

Construction of the deflectors would total approximately 48,000 feet. The height of the deflectors was assumed to be 12 feet. Construction would begin in November 2025 and last approximately 13 months.

- Activity Start Date

Start Month:	11
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	11
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.265030
SO _x	0.004879
NO _x	1.502261
СО	2.241723
PM 10	0.051185

Pollutant	Total Emissions (TONs)
PM 2.5	0.051022
Pb	0.000000
NH ₃	0.001713
CO ₂ e	469.5

27.1 Building Construction Phase

27.1.1 Building Construction Phase Timeline Assumptions

Phase Start Date	
Start Month:	11
Start Quarter:	1
Start Year:	2025

-

- Phase Duration Number of Month: 13 Number of Days: 0

27.1.2 Building Construction Phase Assumptions

- General Building Construct	tion Information
Building Category:	Office or Industrial
Area of Building (ft ²):	48000
Height of Building (ft):	12
Number of Units:	N/A

 Building Construction Default Settings 					
Default Settings Used:	Yes				
Average Day(s) worked per week:	5 (default)				

- Construction Exhaust (default)

Equipment Name	Number Of	Hours Per Day
	Equipment	
Cranes Composite	1	6
Forklifts Composite	2	6
Generator Sets Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8
Welders Composite	3	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

27.1.3 Building Construction Phase Emission Factor(s)

Construction Exhaust Emission 1 actors (10/11041) (actually										
Cranes Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77		
Forklifts Composite	Forklifts Composite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449		
Generator Sets Com	posite									
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e		
Emission Factors	0.0287	0.0006	0.2329	0.2666	0.0080	0.0080	0.0025	61.057		
Tractors/Loaders/B	ackhoes Co	mposite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872		
Welders Composite										
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e		
Emission Factors	0.0214	0.0003	0.1373	0.1745	0.0051	0.0051	0.0019	25.650		

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

· emiere B	enere Exhaust & Worker Trips Enission Factors (grams/mile)								
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

27.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28. Construction / Demolition

28.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Renovate Building 452 (Hangar 3)

- Activity Description:

Renovation of Hangar 452 would occur from August 2024 through February 2026.

It was assumed 25 percent of the total square footage of the facility (21,024 square feet * 0.25 = 5,256 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 19 months.

It was assumed architectural coatings would be required for the entire facility (21,024 square feet) following the renovations. Architectural coating application would begin in February 2026 and last approximately 1 month.

- Activity Start Date Start Month: 8 Start Month: 2024

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.436750
SO _x	0.003838
NO _x	0.965344
СО	1.619187
PM 10	0.032164

Pollutant	Total Emissions (TONs)
PM 2.5	0.032123
Pb	0.000000
NH ₃	0.001095
CO ₂ e	369.5

28.1 Building Construction Phase

28.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2024

_	Phase	Duration
	1 mase	Duration

Number of Month: 19 Number of Days: 0

28.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	5256
Height of Building (ft):	15
Number of Units:	N/A

- Building Construction Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

28.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78
Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451
Tractors/Loaders/Backhoes Composite								

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

28.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

VMT_{VE} = BA * BH * (0.42 / 1000) * HT

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

28.2 Architectural Coatings Phase

28.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 2 Start Quarter: 1 Start Year: 2026

- Phase Duration Number of Month: 1 Number of Days: 0

28.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 21024 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

28.2.3 Architectural Coatings Phase Emission Factor(s)

- worker rings Emission Factors (grams/mile)									
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

28.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
1: Conversion Factor man days to trips (1 trip / 1 man * day)
WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

29. Construction / Demolition

29.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Wash Rack Renovation

- Activity Description:

Renovation of Building 454 to relocate the wash rack would occur from August 2024 through September 2025.

It was assumed 25 percent of the total square footage of the facility (13,124 square feet * 0.25 = 3,281 square feet) would be construction to equate the renovations. Renovations would begin in August 2024 and last approximately 14 months.

It was assumed architectural coatings would be required for the entire facility (13,124 square feet) following the renovations. Architectural coatings application would begin in September 2025 and last approximately 1 month.

- Activity Start Date

Start Month:	8
Start Month:	2024

- Activity End Date

Indefinite:	False
End Month:	9
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.294183
SO _x	0.002825
NO _x	0.710509
СО	1.191602
PM 10	0.023672

Pollutant	Total Emissions (TONs)
PM 2.5	0.023644
Pb	0.000000
NH ₃	0.000796
CO ₂ e	271.9

29.1 Building Construction Phase

29.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2024
- Phase Duration Number of Month: 14 Number of Days: 0

29.1.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category:	Office or Industrial
Area of Building (ft ²):	3281
Height of Building (ft):	15
Number of Units:	N/A

- Building Construction Default Settings

Default Settings Used:YesAverage Day(s) worked per week:5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4

Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

29.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite									
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0715	0.0013	0.4600	0.3758	0.0161	0.0161	0.0064	128.78	
Forklifts Composite	Forklifts Composite								
	VOC	SOx	NOx	СО	PM 10	PM 2.5	CH4	CO ₂ e	
Emission Factors	0.0246	0.0006	0.0973	0.2146	0.0029	0.0029	0.0022	54.451	
Tractors/Loaders/B	Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CH ₄	CO ₂ e	
Emission Factors	0.0348	0.0007	0.1980	0.3589	0.0068	0.0068	0.0031	66.875	

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

29.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment

WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VT}: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

29.2 Architectural Coatings Phase

29.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 9 Start Quarter: 1 Start Year: 2025

- Phase Duration Number of Month: 1 Number of Days: 0

29.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 13124 Number of Units: N/A
- Architectural Coatings Default Settings
 Default Settings Used: Yes
 Average Day(s) worked per week: 5 (default)
- Worker Trips Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

29.2.3 Architectural Coatings Phase Emission Factor(s)

ti officer .	i i ps Emis	nom i actor	5 (gi ums/ m	me)					
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

- Worker Trips Emission Factors (grams/mile)

29.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man * day)

WT: Average Worker Round Trip Commute (mile)
PA: Paint Area (ft²)
800: Conversion Factor square feet to man days (1 ft² / 1 man * day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOC_{AC}: Architectural Coating VOC Emissions (TONs)
BA: Area of Building (ft²)
2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)
0.0116: Emission Factor (lb/ft²)
2000: Conversion Factor pounds to tons

30. Construction / Demolition

30.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Antenna Farm

- Activity Description:

Construction of the antenna farm would occur from August 2024 through December 2024.

It was assumed approximately 5,000 square feet would be trenched and excavated for installation of the antenna farm. Trenching/excavation would begin in August 2024 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date	
Start Month:	8
Start Month:	2024

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2024

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.103650
SO _x	0.002153
NO _x	0.497117

Pollutant	Total Emissions (TONs)
PM 2.5	0.018234
Pb	0.000000
NH ₃	0.000275

СО	0.837771	CO ₂ e	203.1
PM 10	0.266939		

30.1 Trenching/Excavating Phase

30.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2024

- Phase Duration Number of Month: 5 Number of Days: 0

30.1.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information	
Area of Site to be Trenched/Excavated (ft ²):	5000
Amount of Material to be Hauled On-Site (yd ³):	0
Amount of Material to be Hauled Off-Site (yd ³):	0

- Trenching Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

30.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

30.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Vehicle Exhaust On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Worker Trips Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

31. Construction / Demolition

31.1 General Information & Timeline Assumptions

- Activity Location

County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Squadron Operations Buildings Renovations

- Activity Description:

Renovation of the Squadron Operations Buildings (Buildings 216 and 234) would occur from July 2025 through August 2028.

It was assumed 25 percent of the total square footage of Building 216 (26,603 square feet) and Building 234 (13,686 square feet) (40,289 total square feet * 0.25 = 10,072.25 square feet) would be construction to equate the renovations. Renovations would begin in July 2025 and last approximately 34 months.

It was assumed architectural coatings would be required for the entire building area (40,289 square feet) following the renovations. Architectural coatings application would begin in August 2028 and last approximately 1 month.

- Activity Start Date

Start Month:7Start Month:2025

- Activity End Date

Indefinite:	False
End Month:	8
End Month:	2028

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.798913
SO _x	0.006868
NO _x	1.585700
CO	2.891207
PM 10	0.050214

Pollutant	Total Emissions (TONs)
PM 2.5	0.050138
Pb	0.000000
NH ₃	0.001947
CO ₂ e	661.2

31.1 Building Construction Phase

31.1.1 Building Construction Phase Timeline Assumptions

- Phase Start Date	
Start Month:	7
Start Quarter:	1
Start Year:	2025

- Phase Duration Number of Month: 34 Number of Days: 0

31.1.2 Building Construction Phase Assumptions

- General Building Construction Information		
Building Category:	Office or Industrial	
Area of Building (ft ²):	10072.25	
Height of Building (ft):	15	
Number of Units:	N/A	

- Building Construction Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cranes Composite	1	4
Forklifts Composite	2	6
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

31.1.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

Cranes Composite

	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0680	0.0013	0.4222	0.3737	0.0143	0.0143	0.0061	128.77
Forklifts Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0236	0.0006	0.0859	0.2147	0.0025	0.0025	0.0021	54.449
Tractors/Loaders/Backhoes Composite								
	VOC	SOx	NOx	CO	PM 10	PM 2.5	CH ₄	CO ₂ e
Emission Factors	0.0335	0.0007	0.1857	0.3586	0.0058	0.0058	0.0030	66.872

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

		it of her if i				/			
	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.1.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.42 / 1000): Conversion Factor ft³ to trips (0.42 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)
VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
0.002205: Conversion Factor grams to pounds
EF_{POL}: Emission Factor for Pollutant (grams/mile)
VM: Worker Trips On Road Vehicle Mixture (%)
2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase VMT_{WT} = WD * WT * 1.25 * NE

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) WD: Number of Total Work Days (days) WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of WorksNE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

VMT_{VT} = BA * BH * (0.38 / 1000) * HT

VMT_{VT}: Vender Trips Vehicle Miles Travel (miles)
BA: Area of Building (ft²)
BH: Height of Building (ft)
(0.38 / 1000): Conversion Factor ft³ to trips (0.38 trip / 1000 ft³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$

 $\begin{array}{l} V_{POL}: \ensuremath{\,\,Venthetarrow}\xspace{1.5} VMT_{VT}: \ensuremath{\,Venthetarrow}\xspace{1.5} VMT_{VT}: \ensuremath{\,Venthetarrow}\xspace{1.5} Venthetarrow\xspace{1.5} VM2002205: \ensuremath{\,Conversion}\xspace{1.5} Factor grams to pounds \\ EF_{POL}: \ensuremath{\,Emission}\xspace{1.5} Factor for Pollutant (grams/mile) \\ VM: \ensuremath{\,Vorker}\xspace{1.5} Trips On Road Vehicle Mixture (\%) \\ 2000: \ensuremath{\,Conversion}\xspace{1.5} Factor pounds to tons \\ \end{array}$

31.2 Architectural Coatings Phase

31.2.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2028

- Phase Duration Number of Month: 1 Number of Days: 0

31.2.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information Building Category: Non-Residential Total Square Footage (ft²): 40289 Number of Units: N/A
- Architectural Coatings Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)							
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

31.2.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (gr	ams/mile)
-------------------------------------	-----------

		ion i actor							
	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.296	000.002	000.222	003.369	000.006	000.006		000.022	00320.428
LDGT	000.371	000.003	000.387	004.752	000.008	000.007		000.024	00412.572
HDGV	000.724	000.005	000.965	014.725	000.017	000.015		000.044	00759.241
LDDV	000.101	000.003	000.132	002.591	000.004	000.004		000.008	00312.132
LDDT	000.233	000.004	000.371	004.384	000.007	000.006		000.008	00442.757
HDDV	000.449	000.013	004.500	001.645	000.163	000.150		000.028	01485.593
MC	002.664	000.003	000.707	013.134	000.026	000.023		000.054	00393.696

31.2.4 Architectural Coatings Phase Formula(s)

- Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 1: Conversion Factor man days to trips (1 trip / 1 man * day) WT: Average Worker Round Trip Commute (mile) PA: Paint Area (ft²) 800: Conversion Factor square feet to man days ($1 \text{ ft}^2 / 1 \text{ man } * \text{ day}$)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{WT}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$

VOCAC: Architectural Coating VOC Emissions (TONs) BA: Area of Building (ft²) 2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area) 0.0116: Emission Factor (lb/ft²) 2000: Conversion Factor pounds to tons

32. Construction / Demolition

32.1 General Information & Timeline Assumptions

- Activity Location County: Lowndes, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: FSRM: Airfield Improvements

- Activity Description:

Aircraft improvements would occur from July 2025 through December 2025.

Airfield improvements would occur on an area totaling approximately 720,000 square feet. Improvements would begin in July 2025 and last approximately 6 months.

- Activity Start Date

Start Month:	7
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	12
End Month:	2025

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.157002
SO _x	0.001830
NO _x	0.775266
СО	1.040129
PM 10	0.041883

Pollutant	Total Emissions (TONs)
PM 2.5	0.041779
Pb	0.000000
NH ₃	0.000618
CO ₂ e	182.3

32.1 Paving Phase

32.1.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month:7Start Quarter:1Start Year:2025

- Phase Duration Number of Month: 6 Number of Days: 0

32.1.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 720000

- Paving Default Settings	
Default Settings Used:	Yes
Average Day(s) worked per week:	5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Pavers Composite	1	8
Paving Equipment Composite	2	8
Rollers Composite	2	6

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

32.1.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	\mathbf{NH}_3	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

32.1.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

 $\begin{array}{l} VMT_{VE}: \mbox{ Vehicle Exhaust Vehicle Miles Travel (miles)} \\ PA: \mbox{ Paving Area (ft^2)} \\ 0.25: \mbox{ Thickness of Paving Area (ft)} \\ (1 / 27): \mbox{ Conversion Factor cubic feet to cubic yards (1 yd^3 / 27 ft^3)} \\ HC: \mbox{ Average Hauling Truck Capacity (yd^3)} \\ (1 / HC): \mbox{ Conversion Factor cubic yards to trips (1 trip / HC yd^3)} \\ HT: \mbox{ Average Hauling Truck Round Trip Commute (mile/trip)} \end{array}$

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

33. Construction / Demolition

33.1 General Information & Timeline Assumptions

- Activity Location
 County: Lowndes, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: FSRM: Trim Pad

- Activity Description:

Construction of a trim pad would occur from August 2025 through February 2026.

Excavation of existing pavement would occur on an area totaling approximately 20,523 square feet. Excavation would begin in August 2025 and last approximately 2 months.

Pavement for the new trim pad would be required for an area totaling approximately 20,523 square feet. Paving would begin in October 2025 and last approximately 5 months.

Assumed no materials are required to be hauled on- or off-site; excavated spoils will be used on-site.

- Activity Start Date

Start Month:	8
Start Month:	2025

- Activity End Date

Indefinite:	False
End Month:	2
End Month:	2026

- Activity Emissions:

Pollutant	Total Emissions (TONs)
VOC	0.113845
SO _x	0.001880
NO _x	0.568786
СО	0.932186
PM 10	0.427134

Pollutant	Total Emissions (TONs)
PM 2.5	0.024167
Pb	0.000000
NH ₃	0.000596
CO ₂ e	179.1

33.1 Trenching/Excavating Phase

33.1.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date Start Month: 8 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 2 Number of Days: 0

33.1.2 Trenching / Excavating Phase Assumptions

General Trenching/Excavating Information Area of Site to be Trenched/Excavated (ft²): 20253 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Excavators Composite	2	8
Other General Industrial Equipmen Composite	1	8
Tractors/Loaders/Backhoes Composite	1	8

- Vehicle Exhaust

Average Hauling Truck Capacity (yd ³):	20 (default)
Average Hauling Truck Round Trip Commute (mile):	20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	50.00	50.00	0	0	0	0	0

33.1.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.1.4 Trenching / Excavating Phase Formula(s)

- Fugitive Dust Emissions per Phase

PM10_{FD} = (20 * ACRE * WD) / 2000

PM10_{FD}: Fugitive Dust PM 10 Emissions (TONs)
20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)
ACRE: Total acres (acres)
WD: Number of Total Work Days (days)
2000: Conversion Factor pounds to tons

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs)
NE: Number of Equipment
WD: Number of Total Work Days (days)
H: Hours Worked per Day (hours)
EF_{POL}: Emission Factor for Pollutant (lb/hour)
2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) HA_{OnSite}: Amount of Material to be Hauled On-Site (yd³) HA_{OffSite}: Amount of Material to be Hauled Off-Site (yd³) HC: Average Hauling Truck Capacity (yd³) (1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs)

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

33.2 Paving Phase

33.2.1 Paving Phase Timeline Assumptions

- Phase Start Date Start Month: 10 Start Quarter: 1 Start Year: 2025
- Phase Duration Number of Month: 5 Number of Days: 0

33.2.2 Paving Phase Assumptions

- General Paving Information Paving Area (ft²): 20253
- Paving Default Settings Default Settings Used: Yes Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

Equipment Name	Number Of Equipment	Hours Per Day
Cement and Mortar Mixers Composite	4	6
Pavers Composite	1	7
Rollers Composite	1	7
Tractors/Loaders/Backhoes Composite	1	7

- Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Ex	haust Vehicle	Mixture (%)
--------------	---------------	-----------	----

	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC
POVs	0	0	0	0	0	100.00	0

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

() of her Trips (emere (/ 0)								
	LDGV	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
POVs	50.00	50.00	0	0	0	0	0	

33.2.3 Paving Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
LDGV	000.597	000.007	000.639	005.101	000.011	000.009		000.033	00367.095
LDGT	000.799	000.010	001.093	008.335	000.012	000.010		000.034	00489.953
HDGV	001.373	000.015	002.807	024.705	000.026	000.023		000.045	00760.448
LDDV	000.233	000.003	000.314	003.669	000.006	000.006		000.008	00375.756
LDDT	000.527	000.005	000.830	007.383	000.008	000.007		000.008	00585.601
HDDV	000.773	000.014	008.040	002.706	000.363	000.334		000.028	01561.469
MC	002.788	000.008	000.733	014.953	000.027	000.024		000.050	00392.901

33.2.4 Paving Phase Formula(s)

- Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$

CEE_{POL}: Construction Exhaust Emissions (TONs) NE: Number of Equipment WD: Number of Total Work Days (days) H: Hours Worked per Day (hours) EF_{POL}: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

- Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$

VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles)
PA: Paving Area (ft²)
0.25: Thickness of Paving Area (ft)
(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)
HC: Average Hauling Truck Capacity (yd³)
(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³)
HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$

V_{POL}: Vehicle Emissions (TONs) VMT_{VE}: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds

EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$

VMT_{WT}: Worker Trips Vehicle Miles Travel (miles)
WD: Number of Total Work Days (days)
WT: Average Worker Round Trip Commute (mile)
1.25: Conversion Factor Number of Construction Equipment to Number of Works
NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$

 V_{POL} : Vehicle Emissions (TONs) VMT_{VE}: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF_{POL}: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

- Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$

VOC_P: Paving VOC Emissions (TONs)
2.62: Emission Factor (lb/acre)
PA: Paving Area (ft²)
43560: Conversion Factor square feet to acre (43560 ft2 / acre)² / acre)

34. Heating

34.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Lowndes, MS Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating for New Facilities

- Activity Description:

Heating for new facilities would begin following construction. For the purposes of this analysis, heating was assumed to required starting in January 2029. Heating would be required for the following facilities: GBTS Facility - 33,000 square feet UMT Facility - 12,000 square feet Hush House - 24,111 square feet Addition to the Egress Shop - 4,000 square feet

Total ares to be heated - 73,111 square feet

- Activity Start Date Start Month: 1

Start Year:	2029
-------------	------

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.014227
SO _x	0.001552
NO _x	0.258674
CO	0.217286
PM 10	0.019659

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.019659
Pb	0.000000
NH ₃	0.000000
CO ₂ e	311.4

34.2 Heating Assumptions

- Heating

Heating Calculation Type: Heat Energy Requirement Method

- Heat Energy Requirement Method

 Area of floorspace to be heated (ft²):
 Type of fuel:
 Type of boiler/furnace:
 Industrial (10 250 MMBtu/hr)
 Heat Value (MMBtu/ft³):
 0.00105
 Energy Intensity (MMBtu/ft²):
- Default Settings Used: Yes
- Boiler/Furnace Usage Operating Time Per Year (hours): 900 (default)

34.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

VOC	SOx	NO _x	CO	PM 10	PM 2.5	Pb	NH ₃	CO ₂ e
5.5	0.6	100	84	7.6	7.6			120390

34.4 Heating Formula(s)

- Heating Fuel Consumption ft³ per Year

FC_{HER}= HA * EI / HV / 1000000

FC_{HER}: Fuel Consumption for Heat Energy Requirement Method HA: Area of floorspace to be heated (ft²)
EI: Energy Intensity Requirement (MMBtu/ft²)
HV: Heat Value (MMBTU/ft³)
1000000: Conversion Factor

- Heating Emissions per Year

 $HE_{POL} = FC * EF_{POL} / 2000$

HE_{POL}: Heating Emission Emissions (TONs) FC: Fuel Consumption EF_{POL}: Emission Factor for Pollutant

2000: Conversion Factor pounds to tons

ROI 2: Birmingham and Birmingham 2 MOAs

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

2028				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	Y AREA			
VOC	1.517	250	No	
NOx	25.205	250	No	
СО	-9.093	250	No	
SOx	0.483	250	No	
PM 10	-0.262	250	No	
PM 2.5	0.096	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1461.6			

2020

2029				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.517	250	No	
NOx	25.205	250	No	
CO	-9.093	250	No	
SOx	0.483	250	No	
PM 10	-0.262	250	No	
PM 2.5	0.096	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1461.6			

2030				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	3.034	250	No	
NOx	50.410	250	No	
CO	-18.187	250	No	
SOx	0.965	250	No	
PM 10	-0.525	250	No	
PM 2.5	0.191	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2923.3			

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	3.034	250	No
NOx	50.410	250	No
CO	-18.187	250	No
SOx	0.965	250	No
PM 10	-0.525	250	No
PM 2.5	0.191	250	No
Pb	0.000	25	No
NH3	0.000	250	No
CO2e	2923.3		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	10, 11, 10, 10, 10, 10, 10, 10, 10, 10,	
Activity Type		Activity Title
2.	Aircraft	2028 and 2029 T-7A MOA Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C MOA Low-Altitude Operations
4.	Aircraft	2030 T-7A MOA Low-Altitude Operations
5.	Aircraft	2030 T-38C MOA Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

- Activity Title: 2028 and 2029 T-7A MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 474 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.774053
SO _x	0.849576
NO _x	25.863346
CO	1.532166
PM 10	0.125002

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.109376
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2570.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	1.774053	PN	M 2.5	0.109376
SO _x	0.849576	Pt)	0.000000
NO _x	25.863346	N	H ₃	0.000000
СО	1.532166	C	O ₂ e	2570.5
PM 10	0.125002			

2.2 Aircraft & Engines

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404- Primary Function: Traine Aircraft has After burn: Yes Number of Engines: 1	GE-102 er	
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogat Original Aircraft Name: Original Engine Name:	e? No	
2.2.2 Aircraft & Engines Emissio	on Factor(s)	
- Aircraft & Engine Emissions Factor Proprietary Information. Contact engine's Emission Factors.	ors (lb/1000lb fuel) Air Quality Subject Matter Expert for More In	nformation regarding this
2.3 Flight Operations		
2.3.1 Flight Operations Assumpt	ions	
	ing and Take-off) cycles for all Aircraft: h-and-Go) cycles for all Aircraft: per Aircraft:	52 474 0 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In M Taxi/Idle Out [Idle] (mins): Takeoff [Military] (mins): Takeoff [After Burn] (mins): Climb Out [Intermediate] (mins Approach [Approach] (mins): Taxi/Idle In [Idle] (mins):	0 19.55 0	
 Trim Test Idle (mins): Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3 2.3.2 Flight Operations Formula Aircraft Emissions per Mode for L 		

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of per Aircr	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, remove 474 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.257151
SO _x	-0.366869
NO _x	-0.658306
СО	-10.625476
PM 10	-0.387441

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.013715
Pb	0.000000
NH ₃	0.000000
CO_2e	-1108.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.257151
SO _x	-0.366869
NO _x	-0.658306
СО	-10.625476
PM 10	-0.387441

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.013715
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1108.8

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	474
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

12

27

9

9

3

- Trim Test Idle (mins): Approach (mins): Intermediate (mins):

Military (mins):

AfterBurn (mins):

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines LTO: Number of Landing and Take-off Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AELTO: Aircraft Emissions (TONs) AEM_{IDLE IN}: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer
1	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 474 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.774053
SO _x	0.849576
NO _x	25.863346
СО	1.532166
PM 10	0.125002

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.109376
Pb	0.000000
NH ₃	0.000000
CO ₂ e	2570.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	1.774053	I	PM 2.5	0.109376
SO _x	0.849576	I	Pb	0.000000
NO _x	25.863346	1	NH3	0.000000

СО	1.532166
PM 10	0.125002

CO ₂ e	2570.5

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	474
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
Taxi/Idle In [Idle] (mins):	0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 474 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

-	Activity	Start	Date
---	----------	-------	------

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.257151
SO _x	-0.366869
NO _x	-0.658306
СО	-10.625476
PM 10	-0.387441

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.013715
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1108.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.257151	PM 2.5	-0.013715
SO _x	-0.366869	Pb	0.000000
NO _x	-0.658306	NH ₃	0.000000
СО	-10.625476	CO ₂ e	-1108.8
PM 10	-0.387441		

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

Fuel Flow VOC **NO**_x CO **PM 10** PM 2.5 CO₂e **SO**_x Idle 520.00 16.80 1.07 1.08 177.45 4.70 4.02 3234 854.00 7.84 1.07 0.84 106.29 2.80 1.85 3234 Approach Intermediate 1030.00 2.78 1.07 0.70 65.07 1.79 0.69 3234 Military 2220.00 0.75 1.07 1.92 30.99 1.13 0.04 3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234
5.3 Flight O	-	Accumntion	A.C.					
5.3.1 Flight	Operations A	Assumption	15					
Number o Number o	itions of Aircraft: of Annual LTC of Annual TGC of Annual Trin	Os (Touch-a	nd-Go) cyc			it: 17 0 0		
- Default Setti	ngs Used:	No						
- Flight Opera	tions TIMs (1	Fime In Mod	le)					
	Out [Idle] (mi		,	0				
	Military] (min			19.55				
Takeoff [A	After Burn] (n	nins):		0				
Climb Ou	t [Intermedia	te] (mins):		0				
Approach	[Approach] ((mins):		0				
Taxi/Idle	In [Idle] (min	s):		0				
- Trim Test								
Idle (mins	s):	12						
Approach	(mins):	27						
Intermedi	ate (mins):	9						
Military (9						
AfterBurr	n (mins):	3						
5.3.2 Flight	Operations I	Formula(s)						
- Aircraft Emi AEM _{POL} = (TII) / 2000				
TIM: Tim	Aircraft Emiss e in Mode (mi	in)		de (TONs)				
FC: Fuel l	ersion Factor n Flow Rate (lb/l	hr)						
	version Facto							
	sion Factor (lb							
	ber of Engines		(C 1 (c 11 ·	C)			
	nber of Landir			tor all aircra	tt)			
2000: Cor	version Factor	r pounds to T	UNs					
- Aircraft Emi	issions for LT	Os per Year						

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

2028				
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.031	250	No	
NOx	31.919	250	No	
СО	-6.015	250	No	
SOx	0.791	250	No	
PM 10	-0.133	250	No	
PM 2.5	0.127	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2393.1			

Pollutant	Action Emissions	sions INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.031	250	No	
NOx	31.919	250	No	
СО	-6.015	250	No	
SOx	0.791	250	No	
PM 10	-0.133	250	No	
PM 2.5	0.127	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2393.1			

2030				
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	3.932	250	No	
NOx	63.505	250	No	
СО	-17.411	250	No	
SOx	1.396	250	No	
PM 10	-0.462	250	No	
PM 2.5	0.247	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	4224.8			

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	3.932	250	No	
NOx	63.505	250	No	
CO	-17.411	250	No	
SOx	1.396	250	No	
PM 10	-0.462	250	No	
PM 2.5	0.247	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	4224.8			

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	10, 11, 10, 10, 10, 10, 10, 10, 10, 10,	
Activity Type		Activity Title
2.	Aircraft	2028 and 2029 T-7A MOA Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C MOA Low-Altitude Operations
4.	Aircraft	2030 T-7A MOA Low-Altitude Operations
5.	Aircraft	2030 T-38C MOA Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 594 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.223180
SO _x	1.064658
NO _x	32.411029
СО	1.920057
PM 10	0.156648

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137067
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3221.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Po	llutant	Emissions Per Year (TONs)
VOC	2.223180	PM 2.	5	0.137067
SO _x	1.064658	Pb		0.000000
NO _x	32.411029	NH ₃		0.000000
СО	1.920057	CO ₂ e		3221.2
PM 10	0.156648			

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1		
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:			
2.2.2 Aircraft & Engines H	Emission Factor(s)		
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.		fuel) bject Matter Expert for More Info	ormation regarding this
2.3 Flight Operations			
2.3.1 Flight Operations As	sumptions		
Number of Annual TGOs Number of Annual Trim	s (Touch-and-Go) cy Test(s) per Aircraft:		52 594 0 0
- Default Settings Used: 1	No		
- Flight Operations TIMs (Tir Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	s): : ns):] (mins): iins):	0 19.55 0 0 0 0	
 Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins): 2.3.2 Flight Operations For Aircraft Emissions non Mod 			
- Aircraft Emissions per Mod	e for LTOs per Year		

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, remove 354 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.192049
SO _x	-0.273991
NO _x	-0.491647
СО	-7.935482
PM 10	-0.289354

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010243
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-828.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.192049
SO _x	-0.273991
NO _x	-0.491647
СО	-7.935482
PM 10	-0.289354

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010243
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-828.1

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	354
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idla (mine)

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines LTO: Number of Landing and Take-off Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AELTO: Aircraft Emissions (TONs) AEM_{IDLE IN}: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEMAPPROACH: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer
1	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 594 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.223180
SO _x	1.064658
NO _x	32.411029
СО	1.920057
PM 10	0.156648

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137067
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3221.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	2.223180	PM 2.5	0.137067
SO _x	1.064658	Pb	0.000000
NO _x	32.411029	NH ₃	0.000000

СО	1.920057
PM 10	0.156648

CO ₂ e	3221.2

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	594
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 594 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

-	Activity	Start	Date
---	----------	-------	------

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.322252
SO _x	-0.459747
NO _x	-0.824966
CO	-13.315470
PM 10	-0.485527

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017187
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1389.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.322252	PM 2.5	-0.017187
SO _x	-0.459747	Pb	0.000000
NO _x	-0.824966	NH ₃	0.000000
СО	-13.315470	CO ₂ e	-1389.6
PM 10	-0.485527		

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

Fuel Flow VOC **NO**_x CO **PM 10** PM 2.5 CO₂e **SO**_x Idle 520.00 16.80 1.07 1.08 177.45 4.70 4.02 3234 854.00 7.84 1.07 0.84 106.29 2.80 1.85 3234 Approach Intermediate 1030.00 2.78 1.07 0.70 65.07 1.79 0.69 3234 Military 2220.00 0.75 1.07 1.92 30.99 1.13 0.04 3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

After Burn 7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234
5.3 Flight Operations							
5.3.1 Flight Operations	Assumption	ns					
	r						
- Flight Operations							
Number of Aircraft:					17		
Number of Annual LT						94	
Number of Annual TG Number of Annual Tri			cies for all A	ircrait:	0		
Number of Annual III	im resu(s) pe				0		
- Default Settings Used:	No						
- Flight Operations TIMs (de)					
Taxi/Idle Out [Idle] (m			0				
Takeoff [Military] (min			19.55				
Takeoff [After Burn] (Climb Out [Intermedia			0 0				
Approach [Approach]			0				
Taxi/Idle In [Idle] (mir			0				
- Trim Test							
Idle (mins):	12						
Approach (mins):	27						
Intermediate (mins): Military (mins):	9 9						
Military (mins): AfterBurn (mins):	3						
5.3.2 Flight Operations	Formula(s)						
- Aircraft Emissions per M							
$AEM_{POL} = (TIM / 60) * (FC)$	/ 1000) * EF	* NE * LTO	O / 2000				
AEM _{POL} : Aircraft Emis	ssions per Pol	llutant & Mo	ode (TONs)				
TIM: Time in Mode (m							
60: Conversion Factor		ours					
FC: Fuel Flow Rate (lb)		1000 1					
1000: Conversion Facto EF: Emission Factor (lb							
NE: Number of Engine)					
LTO: Number of Landi		-off Cycles (for all aircra	ft)			
2000: Conversion Facto				,			

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

2028					
Pollutant	Action Emissions INSIGNIFICANCE INDICATOR				
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	2.031	250	No		
NOx	31.919	250	No		
СО	-6.015	250	No		
SOx	0.791	250	No		
PM 10	-0.133	250	No		
PM 2.5	0.127	250	No		
Pb	0.000	25	No		
NH3	0.000	250	No		
CO2e	2393.1				

Pollutant	t Action Emissions INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.031	250	No	
NOx	31.919	250	No	
СО	-6.015	250	No	
SOx	0.791	250	No	
PM 10	-0.133	250	No	
PM 2.5	0.127	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2393.1			

2030				
Pollutant	Pollutant Action Emissions INSIGNIFICANCE INDICATOR			
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	3.932	250	No	
NOx	63.505	250	No	
СО	-17.411	250	No	
SOx	1.396	250	No	
PM 10	-0.462	250	No	
PM 2.5	0.247	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	4224.8			

2031 - (Steady State)

Pollutant	Action Emissions	Action Emissions INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	3.932	250	No
NOx	63.505	250	No
CO	-17.411	250	No
SOx	1.396	250	No
PM 10	-0.462	250	No
PM 2.5	0.247	250	No
Pb	0.000	25	No
NH3	0.000	250	No
CO2e	4224.8		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:AlabamaCounty(s):Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, ALRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	10, 11, 10, 10, 10, 10, 10, 10, 10, 10,	
Activity Type		Activity Title
2.	Aircraft	2028 and 2029 T-7A MOA Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C MOA Low-Altitude Operations
4.	Aircraft	2030 T-7A MOA Low-Altitude Operations
5.	Aircraft	2030 T-38C MOA Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location

- Activity Title: 2028 and 2029 T-7A MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 594 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.223180
SO _x	1.064658
NO _x	32.411029
СО	1.920057
PM 10	0.156648

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137067
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3221.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Po	llutant	Emissions Per Year (TONs)
VOC	2.223180	PM 2.	5	0.137067
SO _x	1.064658	Pb		0.000000
NO _x	32.411029	NH ₃		0.000000
СО	1.920057	CO ₂ e		3221.2
PM 10	0.156648			

2.2 Aircraft & Engines

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1			
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:				
2.2.2 Aircraft & Engines H	Emission Factor(s)			
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.		fuel) Ibject Matter Expert for More Info	ormation regarding this	
2.3 Flight Operations				
2.3.1 Flight Operations As	sumptions			
Number of Annual TGOs Number of Annual Trim	(Touch-and-Go) cy		68 594 0 0	
a				
- Flight Operations TIMs (Tin Taxi/Idle Out [Idle] (mins) Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	s): : ns): (mins): ins):	0 19.55 0 0 0 0		
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins): 2.3.2 Flight Operations Fo	12 27 9 9 3 rmula(s)			
- Aircraft Emissions per Mode for LTOs per Year				

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MOA Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, remove 354 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.192049
SO _x	-0.273991
NO _x	-0.491647
СО	-7.935482
PM 10	-0.289354

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010243
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-828.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.192049
SO _x	-0.273991
NO _x	-0.491647
СО	-7.935482
PM 10	-0.289354

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010243
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-828.1

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	354
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

-	Trim Test
	Idle (mins)

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

3.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines LTO: Number of Landing and Take-off Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE IN}: Aircraft Emissions for Idle-In Mode (TONs) AEMIDLE OUT: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer
1	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 594 T-7A low-altitude operations in Birmingham and Birmingham 2 MOAs.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	2.223180
SO _x	1.064658
NO _x	32.411029
СО	1.920057
PM 10	0.156648

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.137067
Pb	0.000000
NH ₃	0.000000
CO ₂ e	3221.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	2.223180	PM 2.5	0.137067
SO _x	1.064658	Pb	0.000000
NO _x	32.411029	NH ₃	0.000000

СО	1.920057
PM 10	0.156648

CO ₂ e	3221.2

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	594
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.55
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
raxinute in fruit, (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Bibb, AL; Dallas, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Sumter, AL **Regulatory Area(s):** NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MOA Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 594 T-38C low-altitude operations in Birmingham and Birmingham 2 MOAs.

-	Activity	Start	Date
---	----------	-------	------

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.322252
SO _x	-0.459747
NO _x	-0.824966
СО	-13.315470
PM 10	-0.485527

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.017187
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-1389.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.322252	PM 2.5	-0.017187
SO _x	-0.459747	Pb	0.000000
NO _x	-0.824966	NH ₃	0.000000
СО	-13.315470	CO ₂ e	-1389.6
PM 10	-0.485527		

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

Fuel Flow VOC **NO**_x CO **PM 10** PM 2.5 CO₂e **SO**_x Idle 520.00 16.80 1.07 1.08 177.45 4.70 4.02 3234 854.00 7.84 1.07 0.84 106.29 2.80 1.85 3234 Approach Intermediate 1030.00 2.78 1.07 0.70 65.07 1.79 0.69 3234 Military 2220.00 0.75 1.07 1.92 30.99 1.13 0.04 3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234
	5.3 Flight Operations 5.3.1 Flight Operations Assumptions							
5.5.1 Flight	Operations A	Assumption	IS					
Number o		Os (Touch-a	nd-Go) cyc			17 `t: 59 0 0		
- Default Setti	ngs Used:	No						
- Flight Opera	tions TIMs (7	Fime In Mod	le)					
	Out [Idle] (mi)	0				
	Military] (min			19.55				
	After Burn] (r			0				
Climb Ou	t [Intermedia	te] (mins):		0				
	[Approach] (0				
Taxi/Idle	In [Idle] (min	s):		0				
- Trim Test								
Idle (mins):	12						
Approach	·	27						
	ate (mins):	9						
Military (1		9						
AfterBurn	n (mins):	3						
5.3.2 Flight	Operations I	Formula(s)						
- Aircraft Emi AEM _{POL} = (TIN				D / 2000				
TIM: Tim	Aircraft Emiss e in Mode (mi	in)		de (TONs)				
FC: Fuel I	ersion Factor n Flow Rate (lb/	hr)						
	version Facto							
	sion Factor (lb							
	ber of Engines		off Cualas (for all aircore	ፁ)			
	nber of Landir			for all allera				
2000: Cor	version Facto	i pounds to 1	UINS					
- Aircraft Emi	ssions for LT	Os per Year						

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

ROI 3: Range R-4404

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location: Base: COLUMBUS AFB State: Mississippi County(s): Noxubee, MS Regulatory Area(s): NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

2028							
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR					
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	NOT IN A REGULATORY AREA						
VOC	0.929	250	No				
NOx	15.435	250	No				
СО	-5.568	250	No				
SOx	0.296	250	No				
PM 10	-0.161	250	No				
PM 2.5	0.059	250	No				
Pb	0.000	25	No				
NH3	0.000	250	No				
CO2e	895.1						

2029

Pollutant	Action Emissions	Action Emissions INSIGNIFICANCE INDICATOR					
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	NOT IN A REGULATORY AREA						
VOC	0.929	250	No				
NOx	15.435	250	No				
СО	-5.568	250	No				
SOx	0.296	250	No				
PM 10	-0.161	250	No				
PM 2.5	0.059	250	No				
Pb	0.000	25	No				
NH3	0.000	250	No				
CO2e	895.1						

2030				
Pollutant	Action Emissions	INSIGNIFICAN	ICE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.858	250	No	
NOx	30.869	250	No	
СО	-11.136	250	No	
SOx	0.591	250	No	
PM 10	-0.321	250	No	
PM 2.5	0.117	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1790.2			

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR					
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY	NOT IN A REGULATORY AREA						
VOC	1.858	250	No				
NOx	30.869	250	No				
CO	-11.136	250	No				
SOx	0.591	250	No				
PM 10	-0.321	250	No				
PM 2.5	0.117	250	No				
Pb	0.000	25	No				
NH3	0.000	250	No				
CO2e	1790.2						

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Noxubee, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A Range Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C Range Low-Altitude Operations
4.	Aircraft	2030 T-7A Range Low-Altitude Operations
5.	Aircraft	2030 T-38C Range Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Noxubee, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A Range Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 291 T-7A low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.086349
SO _x	0.520262
NO _x	15.837650
СО	0.938328
PM 10	0.076545

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.066977
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1574.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.086349	PM 2.5	0.066977
SO _x	0.520262	Pb	0.000000
NO _x	15.837650	NH ₃	0.000000
СО	0.938328	CO ₂ e	1574.1
PM 10	0.076545		

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-7A	
Engine Model:	F404-GE-102	
Primary Function:	Trainer	
Aircraft has After burn:		
Number of Engines:	1	
Tumber of Engines.	•	
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:		
2.2.2 Aircraft & Engines F	Emission Factor(s)	
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	s Factors (lb/1000lb fuel) Contact Air Quality Subject Matter Expert for More In	formation regarding this
2.3 Flight Operations		
2.3.1 Flight Operations As	sumptions	
- Flight Operations		
Number of Aircraft:		52
	(Landing and Take-off) cycles for all Aircraft:	291
	(Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim	· · ·	0
	lo	
- Flight Operations TIMs (Tin	ne In Mode)	
Taxi/Idle Out [Idle] (mins		
Takeoff [Military] (mins)		
Takeoff [After Burn] (mi		
Climb Out [Intermediate		
Approach [Approach] (m		
Taxi/Idle In [Idle] (mins):	0	

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C Range Low-Altitude Operations

- Activity Description: 2028 and 2029: Starting in 2028, remove 291 T-38C low-altitude operations in R-4404.

- Activity Start Date

S	Star	t	Month:	1
	.		X 7	202

Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.157467
SO _x	-0.224653
NO _x	-0.403116
СО	-6.506552
PM 10	-0.237251

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008398
Pb	0.000000
NH ₃	0.000000
CO_2e	-679.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

Pollutant	Emissions Per Year (TONs)
VOC	-0.157467
SO _x	-0.224653
NO _x	-0.403116
CO	-6.506552
PM 10	-0.237251

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008398
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-679.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0		<u></u>					
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used:	No			
- Flight Operations TIMs (T	· · · · ·			
Taxi/Idle Out [Idle] (mi	ns):	0		
Takeoff [Military] (min	s):	19.5		
Takeoff [After Burn] (n	nins):	0		
Climb Out [Intermediate] (mins):		0		
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (mins	s):	0		
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins):	9			
AfterBurn (mins):				
3.3.2 Flight Operations F	'ormula(s)			
- Aircraft Emissions per Mo AEM _{POL} = (TIM / 60) * (FC /				

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 291 T-7A low-altitude operations in R-4404.

- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.086349
SO _x	0.520262
NO _x	15.837650
CO	0.938328
PM 10	0.076545

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.066977
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1574.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	1.086349	
SO _x	0.520262	
NO _x	15.837650	
CO	0.938328	
PM 10	0.076545	

a n o partj.			
Pollutant	Emissions Per Year (TONs)		
PM 2.5	0.066977		
Pb	0.000000		
NH ₃	0.000000		
CO ₂ e	1574.1		

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	291
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.5
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 T-38C Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 291 T-38C low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	-0.157467				
SO _x	-0.224653				
NO _x	-0.403116				
CO	-6.506552				
PM 10	-0.237251				

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008398
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-679.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

	in give operations (includes
Pollutant	Emissions Per Year (TONs)
VOC	-0.157467
SO _x	-0.224653
NO _x	-0.403116
CO	-6.506552
PM 10	-0.237251

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008398
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-679.0

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/100	01b fuel)
---	-----------

			(10/1000101)					
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	291
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.5
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
1	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location: Base: COLUMBUS AFB State: Mississippi County(s): Noxubee, MS Regulatory Area(s): NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

	2	028		
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.237	250	No	
NOx	19.453	250	No	
СО	-3.726	250	No	
SOx	0.480	250	No	
PM 10	-0.083	250	No	
PM 2.5	0.077	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1452.6			

2029				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.237	250	No	
NOx	19.453	250	No	
СО	-3.726	250	No	
SOx	0.480	250	No	
PM 10	-0.083	250	No	
PM 2.5	0.077	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1452.6			

2020

	2	030		
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.395	250	No	
NOx	38.706	250	No	
СО	-10.672	250	No	
SOx	0.849	250	No	
PM 10	-0.284	250	No	
PM 2.5	0.150	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2569.1			

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.395	250	No	
NOx	38.706	250	No	
CO	-10.672	250	No	
SOx	0.849	250	No	
PM 10	-0.284	250	No	
PM 2.5	0.150	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2569.1			

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Noxubee, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A Range Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C Range Low-Altitude Operations
4.	Aircraft	2030 T-7A Range Low-Altitude Operations
5.	Aircraft	2030 T-38C Range Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Noxubee, MS Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2028 and 2029 T-7A Range Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 363 T-7A low-altitude operations in R-4404.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.355136
SO _x	0.648987
NO _x	19.756243
СО	1.170491
PM 10	0.095484

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083549
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1963.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	1.355136]]	PM 2.5	0.083549
SO _x	0.648987		Pb	0.000000
NO _x	19.756243]]	NH3	0.000000
СО	1.170491	(CO ₂ e	1963.6
PM 10	0.095484			

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

 Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines: Aircraft & Engine Surrogat 	1			
Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:				
2.2.2 Aircraft & Engines H	Emission Factor(s)			
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	Contact Air Quality Subject Matter Expert for More In	formation regarding this		
2.3 Flight Operations				
2.3.1 Flight Operations As	ssumptions			
	s (Landing and Take-off) cycles for all Aircraft: s (Touch-and-Go) cycles for all Aircraft: Test(s) per Aircraft:	52 363 0 0		
- Default Settings Used:	No			
- Flight Operations TIMs (Tin Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	s): 0 i: 19.5 ins): 0 inins): 0			
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	12 27 9 9 3			
2.3.2 Flight Operations Formula(s)				
- Aircraft Emissions per Mode for LTOs per Vear				

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of per Aircr	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C Range Low-Altitude Operations

- Activity Description: 2028 and 2029: Starting in 2028, remove 219 T-38C low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.118506
SO _x	-0.169069
NO _x	-0.303376
СО	-4.896683
PM 10	-0.178550

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006320
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-511.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.118506
SO _x	-0.169069
NO _x	-0.303376
СО	-4.896683
PM 10	-0.178550

t & APU) partj:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006320
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-511.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used:	No			
- Flight Operations TIMs (T	ime In Mode)			
Taxi/Idle Out [Idle] (mi	ns):	0		
Takeoff [Military] (min	s):	19.5		
Takeoff [After Burn] (n	nins):	0		
Climb Out [Intermedia	te] (mins):	0		
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (mins	5):	0		
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins):	9			
AfterBurn (mins):	3			
3.3.2 Flight Operations F	Formula(s)			

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 363 T-7A low-altitude operations in R-4404.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.355136
SO _x	0.648987
NO _x	19.756243
СО	1.170491
PM 10	0.095484

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083549
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1963.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Polluta	nt Emissions Per Year (TONs)
VOC	1.355136	PM 2.5	0.083549
SO _x	0.648987	Pb	0.000000
NO _x	19.756243	NH ₃	0.000000
СО	1.170491	CO ₂ e	1963.6

PM 10	0.095484	
4.2 Aircraft & Engines		
4.2.1 Aircraft & Engines	Assumptions	
0		
- Aircraft & Engine Aircraft Designation:	T-7A	
Engine Model:	F404-GE-102	
Primary Function: Aircraft has After burn:	Trainer Yes	
Number of Engines:	1	
Aircraft & Engine Surroga	te	
Is Aircraft & Engine a S		
Original Aircraft Name: Original Engine Name:		
1.2.2 Aircraft & Engines	Emission Factor(s)	
 Aircraft & Engine Emission Proprietary Information. engine's Emission Factors 	Contact Air Quality Subject Matter Expe	ert for More Information regarding this
4.3 Flight Operations		
4.3.1 Flight Operations A	ssumptions	
- Flight Operations		2
Number of Aircraft: Number of Annual LTO	s (Landing and Take-off) cycles for all	9 Aircraft: 363
Number of Annual TGC	s (Touch-and-Go) cycles for all Aircra	oft: 0
Number of Annual Trim	Test(s) per Aircraft:	0
Default Settings Used:	No	
- Flight Operations TIMs (T		
Taxi/Idle Out [Idle] (min Takeoff [Military] (mins		
Takeoff [After Burn] (m		
Climb Out [Intermediat	e] (mins): 0	
Approach [Approach] (1 Taxi/Idle In [Idle] (mins		
Trim Test		
Idle (mins):	12	
Approach (mins):	27	
Intermediate (mins): Military (mins):	9 9	
AfterBurn (mins):	3	
1.3.2 Flight Operations F	ormula(s)	
inshe operations i	()	

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 363 T-38C low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.196428
SO _x	-0.280238
NO _x	-0.502857
СО	-8.116420
PM 10	-0.295952

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010476
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.196428	PM 2.5	-0.010476
SO _x	-0.280238	Pb	0.000000
NO _x	-0.502857	NH ₃	0.000000
СО	-8.116420	CO ₂ e	-847.0
PM 10	-0.295952		

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	363
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.5
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
-	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location: Base: COLUMBUS AFB State: Mississippi County(s): Noxubee, MS Regulatory Area(s): NOT IN A REGULATORY AREA

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Air Impact Analysis: Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

_____ applicable __X__ not applicable

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all

algorithms, emission factors, and methodologies used are described in detail in the USAF Air Emissions Guide for Air Force Stationary Sources, the USAF Air Emissions Guide for Air Force Mobile Sources, and the USAF Air Emissions Guide for Air Force Transitory Sources.

"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/yr Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5% of any NAAQS) and the GCR de minimis values (25 ton/yr for lead and 100 ton/yr for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5% of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see chapter 4 of the Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments.

The action's net emissions for every year through achieving steady state were compared against the Insignificance Indicator and are summarized below.

....

Analysis Summary:

2028				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.237	250	No	
NOx	19.453	250	No	
СО	-3.726	250	No	
SOx	0.480	250	No	
PM 10	-0.083	250	No	
PM 2.5	0.077	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1452.6			

2029				
Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	1.237	250	No	
NOx	19.453	250	No	
СО	-3.726	250	No	
SOx	0.480	250	No	
PM 10	-0.083	250	No	
PM 2.5	0.077	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	1452.6			

2020

2030				
Pollutant	Action Emissions	issions INSIGNIFICANCE INDICATOR		
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY	AREA			
VOC	2.395	250	No	
NOx	38.706	250	No	
СО	-10.672	250	No	
SOx	0.849	250	No	
PM 10	-0.284	250	No	
PM 2.5	0.150	250	No	
Pb	0.000	25	No	
NH3	0.000	250	No	
CO2e	2569.1			

2031 - (Steady State)

Pollutant	Action Emissions	INSIGNIFICANCE INDICATOR	
	(ton/yr)	Indicator (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	2.395	250	No
NOx	38.706	250	No
CO	-10.672	250	No
SOx	0.849	250	No
PM 10	-0.284	250	No
PM 2.5	0.150	250	No
Pb	0.000	25	No
NH3	0.000	250	No
CO2e	2569.1		

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action will not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

mA

Carolyn Hein, Contractor

2/21/2023 DATE

1. General Information

- Action Location

Base:COLUMBUS AFBState:MississippiCounty(s):Noxubee, MSRegulatory Area(s):NOT IN A REGULATORY AREA

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:Carolyn HeinTitle:ContractorOrganization:HDREmail:Phone Number:

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A Range Low-Altitude Operations
3.	Aircraft	2028 and 2029 T-38C Range Low-Altitude Operations
4.	Aircraft	2030 T-7A Range Low-Altitude Operations
5.	Aircraft	2030 T-38C Range Low-Altitude Operations

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add
- Activity Location County: Noxubee, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A Range Low-Altitude Operations

- Activity Description:

2028 and 2029: Starting in 2028, add 363 T-7A low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		
VOC	1.355136		
SO _x	0.648987		
NO _x	19.756243		
СО	1.170491		
PM 10	0.095484		

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083549
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1963.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.355136	PM 2.5	0.083549
SO _x	0.648987	Pb	0.000000
NO _x	19.756243	NH ₃	0.000000
СО	1.170491	CO ₂ e	1963.6
PM 10	0.095484		

2.2 Aircraft & Engines

0

2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine		
Aircraft Designation:	T-7A	
Engine Model:	F404-GE-102	
Primary Function:	Trainer	
Aircraft has After burn:		
Number of Engines:	1	
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:		
2.2.2 Aircraft & Engines H	mission Factor(s)	
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	s Factors (lb/1000lb fuel) Contact Air Quality Subject Matter Expert fo	or More Information regarding this
2.3 Flight Operations		
2.3.1 Flight Operations As	sumptions	
- Flight Operations		
Number of Aircraft:		68
	(Landing and Take-off) cycles for all Air	
	(Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim	Test(s) per Aircraft:	0
- Default Settings Used: N	lo	
- Flight Operations TIMs (Ti	ne In Mode)	
Taxi/Idle Out [Idle] (min		
Takeoff [Military] (mins)		
Takeoff [After Burn] (mi	ns): 0	
Climb Out [Intermediate		
Approach [Approach] (m	ins): 0	

- Trim Test Idle (mins): 12 Approach (mins): 27 9 Intermediate (mins): 9 Military (mins): AfterBurn (mins): 3

Taxi/Idle In [Idle] (mins):

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C Range Low-Altitude Operations

- Activity Description: 2028 and 2029: Starting in 2028, remove 219 T-38C low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
	202

Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.118506
SO _x	-0.169069
NO _x	-0.303376
СО	-4.896683
PM 10	-0.178550

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006320
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-511.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

Pollutant	Emissions Per Year (TONs)
VOC	-0.118506
SO _x	-0.169069
NO _x	-0.303376
CO	-4.896683
PM 10	-0.178550

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006320
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-511.0

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine
------------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	0		<u></u>					
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

3.3 Flight Operations

3.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used:	No			
- Flight Operations TIMs (1	Time In Mode)			
Taxi/Idle Out [Idle] (mi	ns):	0		
Takeoff [Military] (min	Takeoff [Military] (mins): 19.5			
Takeoff [After Burn] (mins): 0				
Climb Out [Intermediate] (mins): 0				
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (min	s):	0		
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins):	9			
AfterBurn (mins):	3			
3.3.2 Flight Operations I	Formula(s)			
- Aircraft Emissions per Mo AEM _{POL} = (TIM / 60) * (FC /				

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, add 363 T-7A low-altitude operations in R-4404.

- Activity Start Date Start Month: 1 Start Year: 2030
- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.355136
SO _x	0.648987
NO _x	19.756243
CO	1.170491
PM 10	0.095484

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083549
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1963.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	1.355136
SO _x	0.648987
NO _x	19.756243
CO	1.170491
PM 10	0.095484

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083549
Pb	0.000000
NH ₃	0.000000
CO_2e	1963.6

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	363
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.5
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location
 County: Noxubee, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA
- Activity Title: 2030 T-38C Range Low-Altitude Operations

- Activity Description:

2030: Starting in 2030, remove 363 T-38C low-altitude operations in R-4404.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.196428
SO _x	-0.280238
NO _x	-0.502857
CO	-8.116420
PM 10	-0.295952

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010476
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]

	in give operations (includes
Pollutant	Emissions Per Year (TONs)
VOC	-0.196428
SO _x	-0.280238
NO _x	-0.502857
CO	-8.116420
PM 10	-0.295952

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010476
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.0

5.2 Aircraft & Engines

5.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

5.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

5.3 Flight Operations

5.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	363
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	19.5
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

5.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
I · · · · ·	LTO			

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

ROI 4: MTRs (IR-066, IR-068, IR-091, VR-1014, and VR-1031)

This section includes the following:

- Alternative 1 ACAM Report
- Alternative 1 ACAM Detail Report
- Alternative 2 ACAM Report
- Alternative 2 ACAM Detail Report
- Alternative 3 ACAM Report
- Alternative 3 ACAM Detail Report

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base: COLUMBUS AFB

State (s): Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN **Regulatory Area(s):** NOT IN A REGULATORY AREA; Birmingham, AL

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Analysis: Total combined direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions. General Conformity under the Clean Air Act, Section 1.76 has been evaluated for the action described above according to the requirements of 40 CFR 93, Subpart B.

Based on the analysis, the requirements of this rule are:

_____ applicable __X__ not applicable

Conformity Analysis Summary:

	20	28	
Pollutant	Action Emissions	GENERAL (CONFORMITY
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	-4.540		
NOx	31.743		
СО	-94.308		
SOx	-0.526		
PM 10	-2.249		
PM 2.5	-0.916		
Pb	0.000		
NH3	0.000		
CO2e	-1585.8		
Birmingham, AL			
VOC	1.069	100	No
NOx	17.774	100	No
СО	-6.406		
SOx	0.341	100	No
PM 10	-0.185		
PM 2.5	0.067	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1033.6		
Birmingham, AL			
VOC	1.251	100	No
NOx	20.756	100	No
СО	-7.524		
SOx	0.393	100	No
PM 10	-0.216		
PM 2.5	0.079	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1188.7		

2029

Pollutant	Action Emissions	GENERAL CONFORMITY				
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)			
NOT IN A REGULATORY	NOT IN A REGULATORY AREA					
VOC	-4.540					
NOx	31.743					
СО	-94.308					
SOx	-0.526					
PM 10	-2.249					

PM 2.5	-0.916		
Pb	0.000		
NH3	0.000		
CO2e	-1585.8		
Birmingham, AL			
VOC	1.069	100	No
NOx	17.774	100	No
СО	-6.406		
SOx	0.341	100	No
PM 10	-0.185		
PM 2.5	0.067	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1033.6		
Birmingham, AL			
VOC	1.251	100	No
NOx	20.756	100	No
СО	-7.524		
SOx	0.393	100	No
PM 10	-0.216		
PM 2.5	0.079	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1188.7		

2030

2030					
Pollutant	Action Emissions	GENERAL O	CONFORMITY		
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY	AREA				
VOC	-2.453				
NOx	66.406				
СО	-106.827				
SOx	0.136				
PM 10	-2.610				
PM 2.5	-0.784				
Pb	0.000				
NH3	0.000				
CO2e	418.8				
Birmingham, AL					
VOC	2.139	100	No		
NOx	35.549	100	No		
СО	-12.811				
SOx	0.683	100	No		
PM 10	-0.370				
PM 2.5	0.135	100	No		
Pb	0.000				
NH3	0.000	100	No		
CO2e	2067.2				
Birmingham, AL					
VOC	2.502	100	No		
NOx	41.512	100	No		
СО	-15.047				
SOx	0.786	100	No		

PM 10	-0.433		
PM 2.5	0.158	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	2377.4		

2031 - (Steady State)

Pollutant Action Emissions GENERAL CONFORMITY				
Fonutant	(ton/yr)	GENERAL CONFORMITY Threshold (ton/yr) Exceedance (Yes or No		
NOT IN A DECULATORY		Inresnoid (ton/yr)	Exceedance (Yes or No)	
NOT IN A REGULATORY		1		
NOx	-2.453 66.406			
<u>CO</u>	-106.827			
SOx DM 10	0.136			
PM 10	-2.610			
PM 2.5	-0.784			
Pb	0.000			
NH3	0.000			
CO2e	418.8			
Birmingham, AL				
VOC	2.139	100	No	
NOx	35.549	100	No	
СО	-12.811			
SOx	0.683	100	No	
PM 10	-0.370			
PM 2.5	0.135	100	No	
Pb	0.000			
NH3	0.000	100	No	
CO2e	2067.2			
Birmingham, AL				
VOC	2.502	100	No	
NOx	41.512	100	No	
СО	-15.047			
SOx	0.786	100	No	
PM 10	-0.433			
PM 2.5	0.158	100	No	
Pb	0.000			
NH3	0.000	100	No	
CO2e	2377.4			

None of estimated emissions associated with this action are above the conformity threshold values established at 40 CFR 93.153 (b); Therefore, the requirements of the General Conformity Rule are not applicable.

Cumput

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base: COLUMBUS AFB

State: Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN
Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 1

- Project Number/s (if applicable):
- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)
3.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)
4.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)
5.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)
6.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)
7.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)
8.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)
9.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)
10.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)
11.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
12.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-066)
13.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-068)
14.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-091)
15.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1014)
16.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1031)
17.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-066)
18.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-068)
19.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-091)
20.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1014)
21.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1031)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, add 219 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.157025
SO _x	0.080184
NO _x	2.316546
CO	0.159112
PM 10	0.011049

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009668
Pb	0.000000
NH ₃	0.000000
CO ₂ e	243.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	0.157025	
SO _x	0.080184	
NO _x	2.316546	
CO	0.159112	
PM 10	0.011049	

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009668
Pb	0.000000
NH ₃	0.000000
CO ₂ e	243.6

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine
------------	---	--------

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	52
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	219
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0

Number of Annual Trim Test(s) per Aircraft:

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
/	

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)

0

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, add 69 T-7A low-altitude operations in IR-068.

- Activity Start Date Start Month: 1

Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.362966
SO _x	0.173033
NO _x	5.287240
CO	0.309763
PM 10	0.025577

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022380
Pb	0.000000
NH ₃	0.000000
CO ₂ e	523.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.362966	PM 2.5	0.022380
SO _x	0.173033	Pb	0.000000
NO _x	5.287240	NH ₃	0.000000
СО	0.309763	CO ₂ e	523.4
PM 10	0.025577		

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1		
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:			
3.2.2 Aircraft & Engines I	Emission Factor(s)		
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	Contact Air Quality Su	fuel) bject Matter Expert for More Info	ormation regarding this
3.3 Flight Operations			
3.3.1 Flight Operations As	ssumptions		
Number of Annual TGO Number of Annual Trim	s (Touch-and-Go) cyc Test(s) per Aircraft:	off) cycles for all Aircraft: cles for all Aircraft:	52 69 0 0
	No		
- Flight Operations TIMs (Ti Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (n Taxi/Idle In [Idle] (mins)	s): :: ns): :] (mins): iins):	0 27.48 0 0 0 0	
 Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins): 3.3.2 Flight Operations For the fight operations For 			
- Aircraft Emissions per Mod	e for LTOs per Year		

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, add 87 T-7A low-altitude operationss in IR-091.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
CO	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
СО	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

C

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		52
Number of Annual LT	Os (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TG	Os (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tri	im Test(s) per Aircraft:	0
- Default Settings Used:	No	
- Flight Operations TIMs (Time In Mode)	

Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

12

27

9

- Trim Test Idle (mins): Approach (mins): Intermediate (mins):

Military (mins):	9
AfterBurn (mins):	3

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

		1 40001 (18)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4
----------	-------	-------	-------	-------	-------	--------	--------	-------

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, add 150 T-7A low-altitude operations in VR-1014.

- Activity Start Date

Start	Month:	1
Start	Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.093637
SO _x	0.519727
NO _x	15.921832
СО	0.925650
PM 10	0.077071

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.067437
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1571.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.093637	PM 2.5	0.067437
SO _x	0.519727	Pb	0.000000
NO _x	15.921832	NH ₃	0.000000
СО	0.925650	CO ₂ e	1571.7

DM 10 0.077071	
PM 10 0.077071	
5.2 Aircraft & Engines	
5.2.1 Aircraft & Engines Assumptions	
 Aircraft & Engine Aircraft Designation: T-7A Engine Model: F404-GE-102 Primary Function: Trainer Aircraft has After burn: Yes Number of Engines: 1 	
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:	
5.2.2 Aircraft & Engines Emission Factor(s)	
 Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for engine's Emission Factors. 	r More Information regarding this
5.3 Flight Operations	
5.3.1 Flight Operations Assumptions	
- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Air Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:	52 craft: 150 0 0
- Default Settings Used: No	
 Flight Operations TIMs (Time In Mode) Taxi/Idle Out [Idle] (mins): Takeoff [Military] (mins): Takeoff [After Burn] (mins): Climb Out [Intermediate] (mins): O Approach [Approach] (mins): O Taxi/Idle In [Idle] (mins): 	
- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3 5.3.2 Flight Operations Formula(s)	
o i i i i i i i i i i	

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2028 and 2029: Starting in 2028, add 60 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.369247
SO _x	0.175740
NO _x	5.377166
CO	0.313771
PM 10	0.026021

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	531.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.369247
SO _x	0.175740
NO _x	5.377166
CO	0.313771
PM 10	0.026021

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	531.5

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	52
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	60
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	32.15
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

12

27

9

9

3

- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins):

AfterBurn (mins):

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (10/117)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, remove 219 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.022729
SO _x	-0.032427
NO _x	-0.058186
СО	-0.939159
PM 10	-0.034245

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001212
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-98.0

<u></u>				
Pollutant	Emissions Per Year (TONs)	Pollutar	nt Emissions Per Year (TONs)	
VOC	-0.022729	PM 2.5	-0.001212	
SO _x	-0.032427	Pb	0.000000	
NO _x	-0.058186	NH ₃	0.000000	
CO	-0.939159	CO_2e	-98.0	
PM 10	-0.034245			

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
8	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	219
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

 County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Parelatory: Area(a): NOT IN A RECULTATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, remove 69 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.052617
SO _x	-0.075067
NO _x	-0.134700
СО	-2.174148
PM 10	-0.079277

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002806
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-226.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	-0.052617		PM 2.5	-0.002806
SO _x	-0.075067		Pb	0.000000
NO _x	-0.134700		NH ₃	0.000000
CO	-2.174148		CO ₂ e	-226.9
PM 10	-0.079277]		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

An cruit & Englite Emissions 1 actors (10/100010 fuer)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	69
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
	· · · · ·		Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
-	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

Regulatory Area(s). NOT IN A REGULATORT AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, remove 87 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month: 1 Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-6.693144
SO _x	-1.282574
NO _x	-3.090821
CO	-84.530812
PM 10	-1.988078

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.050946
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3876.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-6.693144
SO _x	-1.282574
NO _x	-3.090821
CO	-84.530812
PM 10	-1.988078

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.050946
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3876.5

9.2 Aircraft & Engines

_

9.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

An cruit & Engine Emissions I actors (15/100015 fuel)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	12

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
- Trim Test	
Idle (mins): 12	

iule (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, remove 150 T-38C low-altitude operations in VR-1014.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.158550
SO _x	-0.226197
NO _x	-0.405887
СО	-6.551271
PM 10	-0.238881

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008456
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-683.7

- Activity Emissions	[Flight Operation	s (includes Trim	Test & APU) part]:
----------------------	-------------------	------------------	--------------------

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.158550	PM 2.5	-0.008456
SO _x	-0.226197	Pb	0.000000
NO _x	-0.405887	NH ₃	0.000000
СО	-6.551271	CO ₂ e	-683.7
PM 10	-0.238881		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

		VOC	0.0		00	DN / 10	DICAS	60
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	150
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----------------	----	-------	--------	-------------------

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
- Activity Description:

2028 and 2029: Starting in 2028, remove 60 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.053530
SO _x	-0.076369
NO _x	-0.137036
СО	-2.211849
PM 10	-0.080651

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002855
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-230.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)				
VOC	-0.053530				
SO _x	-0.076369				
NO _x	-0.137036				
СО	-2.211849				
PM 10	-0.080651				

t & APU) part[:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002855
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-230.8

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

	68
ike-off) cycles for all Aircraft:	60
cycles for all Aircraft:	0
aft:	0
0	
32.15	
0	
0	
0	
0	
	cycles for all Aircraft: aft: 0 32.15 0 0 0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APUOperationper AircraftHours for EachLTO	Exempt Source?	Designation	Manufacturer
---	-------------------	-------------	--------------

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, add 219 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.157025
SO _x	0.080184
NO _x	2.316546
СО	0.159112
PM 10	0.011049

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009668
Pb	0.000000
NH ₃	0.000000
CO ₂ e	243.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	0.157025	
SO _x	0.080184	
NO _x	2.316546	
CO	0.159112	

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.009668
Pb	0.000000
NH ₃	0.000000
CO ₂ e	243.6

PM 10	0.011049		
2.2 Aircraft & Engine	es		
2.2.1 Aircraft & Engi	nes Assumptions		
Aircraft & Engine			
Aircraft Designation:	T-7A		
Engine Model:	F404-GE-102		
Primary Function:	Trainer		
Aircraft has After bu Number of Engines:	rn: Yes 1		
Aircraft & Engine Surro	nasta		
Is Aircraft & Engine			
Original Aircraft Na			
Original Engine Nam			
2.2.2 Aircraft & Engi	nes Emission Factor(s)	
Aircraft & Engine Emis	sions Factors (1b/10001b	fuel)	
		bject Matter Expert for More Inf	formation regarding this
engine's Emission Fact		j	
2.2 Elight Onerations			
2.3 Flight Operations			
2.3.1 Flight Operation	s Assumptions		
Flight Operations			
Number of Aircraft:			9
		-off) cycles for all Aircraft:	219
	GOs (Touch-and-Go) cy rim Test(s) per Aircraft		0 0
			0
Default Settings Used:	No		
Flight Operations TIMs	. ,	0	
Taxi/Idle Out [Idle] (Takeoff [Military] (m		0 3.74	
Takeoff [After Burn]		0	
Climb Out [Intermed		0	
Approach [Approach		0	
Taxi/Idle In [Idle] (m	ins):	0	
Trim Test			
Idle (mins):	12		
Approach (mins):	27		
Intermediate (mins):	9		
Military (mins):	9 3		
AfterBurn (mins):	5		
2.3.2 Flight Operation	ıs Formula(s)		
Aircraft Emissions per I	Aode for LTOs per Year	r	
		O / 2000	

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - **County:** Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, add 69 T-7A low-altitude operations in IR-068.

-	Activity	Start Date	
---	----------	------------	--

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.362966
SO _x	0.173033
NO _x	5.287240
СО	0.309763
PM 10	0.025577

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022380
Pb	0.000000
NH ₃	0.000000
CO ₂ e	523.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.362966	PM 2.5	0.022380
SO _x	0.173033	Pb	0.000000
NO _x	5.287240	NH ₃	0.000000
СО	0.309763	CO ₂ e	523.4
PM 10	0.025577		

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

· Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	69
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Parallatary: Area(a): NOT IN A REGULATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, add 87 T-7A low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
СО	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]: Pollutant Emissions Per Year (TONs) Pollutant Emissions Per Year (TONs)

VOC	0.457652
SO _x	0.218172
NO _x	6.666520
СО	0.390571
PM 10	0.032250

PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

14.3.1 Flight Operations Assumptions

- Flight Operations		
Number of Aircraft:		9
Number of Annual LT	Os (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TC	GOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Tr	im Test(s) per Aircraft:	0
- Default Settings Used:	No	

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, add 150 T-7A low-altitude operations in VR-1014.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.093637
SO _x	0.519727
NO _x	15.921832
CO	0.925650
PM 10	0.077071

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.067437
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1571.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.093637	PM 2.5	0.067437
SO _x	0.519727	Pb	0.000000
NO _x	15.921832	NH ₃	0.000000
CO	0.925650	CO ₂ e	1571.7
PM 10	0.077071		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	150
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, add 60 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)				
VOC	0.369247				
SO _x	0.175740				
NO _x	5.377166				
СО	0.313771				
PM 10	0.026021				

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	531.5

Pollutant	Emissions Per Year (TONs)
VOC	0.369247
SO _x	0.175740
NO _x	5.377166
CO	0.313771
PM 10	0.026021

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.022768
Pb	0.000000
NH ₃	0.000000
CO ₂ e	531.5

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1
_	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

 Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft: 		
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	0	
Takeoff [Military] (mins):	32.15	
Takeoff [After Burn] (mins):	0	
Climb Out [Intermediate] (mins):	0	
Approach [Approach] (mins):	0	
Taxi/Idle In [Idle] (mins):	0	
- Trim Test		
$\mathbf{Idle}(\mathbf{mins}), \qquad 12$		

I rim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9

Military (mins):	9
AfterBurn (mins):	3

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)TD: Test Duration (min)60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, remove 219 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)					
VOC	-0.022729					
SO _x -0.032427						
NO _x	-0.058186					
СО	-0.939159					
PM 10	-0.034245					

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001212
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-98.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.022729	PM 2.5	-0.001212
SO _x	-0.032427	Pb	0.000000
NO _x	-0.058186	NH ₃	0.000000
СО	-0.939159	CO ₂ e	-98.0
PM 10	-0.034245		

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

An crait & Englite Emission's Lactor's (10/100010 lact)								
	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	219
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	-	
	LTO			

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----	----	-------	--------	-------------------

17.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, remove 69 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.052617
SO _x	-0.075067
NO _x	-0.134700
CO	-2.174148
PM 10	-0.079277

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002806
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-226.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.052617
SO _x	-0.075067
NO _x	-0.134700
СО	-2.174148
PM 10	-0.079277

Pollutant Emissions Per Year (TONs) PM 2.5 -0.002806 Pb 0.000000 NH₃ 0.000000 CO₂e -226.9

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	69
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, remove 87 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.066344
SO _x	-0.094650
NO _x	-0.169840
СО	-2.741317
PM 10	-0.099958

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.003538
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-286.1

- Activity Emissions	[Flight Operation	s (includes Trim	Test & APU) part]:
----------------------	-------------------	------------------	--------------------

Pollutant	Emissions Per Year (TONs)		Pollutant	Emissions Per Year (TONs)
VOC	-0.066344		PM 2.5	-0.003538
SO _x	-0.094650		Pb	0.000000
NO _x	-0.169840]	NH ₃	0.000000
СО	-2.741317]	CO ₂ e	-286.1
PM 10	-0.099958]		

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19.4 Auxiliary Power Unit (APU)

19.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

19.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----------------	----	-------	--------	-------------------

19.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, remove 150 T-38C low-altitude operations in VR-1014.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.158550
SO _x	-0.226197
NO _x	-0.405887
CO	-6.551271
PM 10	-0.238881

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.008456
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-683.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.158550	PM 2.5	-0.008456
SO _x	-0.226197	Pb	0.000000
NO _x	-0.405887	NH ₃	0.000000
CO	-6.551271	CO ₂ e	-683.7
PM 10	-0.238881		

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

Number of Aircraft:

⁻ Flight Operations

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	150
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines TGO: Number of Touch-and-Go Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20.4 Auxiliary Power Unit (APU)

20.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	(
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
_	LTO			

20.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designat	tion	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
		FIOW							

20.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, remove 60 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.053530
SO _x	-0.076369
NO _x	-0.137036
СО	-2.211849
PM 10	-0.080651

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002855
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-230.8

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Po
VOC	-0.053530	PM 2.
SO _x	-0.076369	Pb
NO _x	-0.137036	NH ₃
CO	-2.211849	CO ₂ e
PM 10	-0.080651	

Pollutant	Emissions Per Year (TONs)					
PM 2.5	-0.002855					
Pb	0.000000					
NH ₃	0.000000					
CO ₂ e	-230.8					

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e	
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234	
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234	
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234	
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234	
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234	

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	60
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	32.15
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines

NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21.4 Auxiliary Power Unit (APU)

21.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

11411141 9 1 0 11 01 0				
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

21.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fue Flow		SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
-------------------------	--	-----	-----	----	-------	--------	-------------------

21.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base: COLUMBUS AFB

State: Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN **Regulatory Area(s):** NOT IN A REGULATORY AREA; Birmingham, AL

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Analysis: Total combined direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions. General Conformity under the Clean Air Act, Section 1.76 has been evaluated for the action described above according to the requirements of 40 CFR 93, Subpart B.

Based on the analysis, the requirements of this rule are:

_____ applicable __X__ not applicable

Conformity Analysis Summary:

2028			
Pollutant	Action Emissions	GENERAL (CONFORMITY
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	-3.833		
NOx	40.966		
СО	-90.081		
SOx	-0.103		
PM 10	-2.071		
PM 2.5	-0.873		
Pb	0.000		
NH3	0.000		
CO2e	-307.6		
Birmingham, AL			
VOC	1.414	100	No
NOx	22.279	100	No
CO	-4.340		
SOx	0.548	100	No
PM 10	-0.098		
PM 2.5	0.088	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1659.1		
Birmingham, AL			
VOC	1.678	100	No
NOx	26.329	100	No
СО	-4.972		
SOx	0.648	100	No
PM 10	-0.109		
PM 2.5	0.105	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1958.7		

2029

Pollutant	Action Emissions	GENERAL C	ONFORMITY
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY AREA			
VOC	-3.833		
NOx	40.966		
СО	-90.081		
SOx	-0.103		
PM 10	-2.071		

PM 2.5	-0.873		
Pb	0.000		
NH3	0.000		
CO2e	-307.6		
Birmingham, AL			
VOC	1.414	100	No
NOx	22.279	100	No
СО	-4.340		
SOx	0.548	100	No
PM 10	-0.098		
PM 2.5	0.088	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1659.1		
Birmingham, AL			
VOC	1.678	100	No
NOx	26.329	100	No
СО	-4.972		
SOx	0.648	100	No
PM 10	-0.109		
PM 2.5	0.105	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1958.7		

2030

2050			
Pollutant	Action Emissions GENERAL CONFO		CONFORMITY
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	-1.219		
NOx	84.394		
СО	-105.766		
SOx	0.726		
PM 10	-2.523		
PM 2.5	-0.708		
Pb	0.000		
NH3	0.000		
CO2e	2203.8		
Birmingham, AL			
VOC	2.741	100	No
NOx	44.333	100	No
СО	-12.289		
SOx	0.972	100	No
PM 10	-0.328		
PM 2.5	0.172	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	2941.7		
Birmingham, AL			
VOC	3.248	100	No
NOx	52.381	100	No
СО	-14.415		
SOx	1.141	100	No

PM 10	-0.380		
PM 2.5	0.204	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	3450.7		

2031 - (Steady State)

2031 - (Steady State) Pollutant Action Emissions GENERAL CONFORMITY			
Pollutant	Action Emissions		
NOT DI A DECLU ATODI	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY		1	
VOC	-1.219		
NOx	84.394		
СО	-105.766		
SOx	0.726		
PM 10	-2.523		
PM 2.5	-0.708		
Pb	0.000		
NH3	0.000		
CO2e	2203.8		
Birmingham, AL			
VOC	2.741	100	No
NOx	44.333	100	No
СО	-12.289		
SOx	0.972	100	No
PM 10	-0.328		
PM 2.5	0.172	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	2941.7		
Birmingham, AL			
VOC	3.248	100	No
NOx	52.381	100	No
СО	-14.415		
SOx	1.141	100	No
PM 10	-0.380		
PM 2.5	0.204	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	3450.7		

None of estimated emissions associated with this action are above the conformity threshold values established at 40 CFR 93.153 (b); Therefore, the requirements of the General Conformity Rule are not applicable.

Cumput

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base: COLUMBUS AFB

State: Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN
Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 2

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)
3.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)
4.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)
5.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)
6.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)
7.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)
8.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)
9.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)
10.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)
11.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
12.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-066)
13.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-068)
14.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-091)
15.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1014)
16.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1031)
17.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-066)
18.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-068)
19.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-091)
20.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1014)
21.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1031)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, add 273 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.195744
SO _x	0.099955
NO _x	2.887749
СО	0.198345
PM 10	0.013773

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.012051
Pb	0.000000
NH ₃	0.000000
CO ₂ e	303.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.195744
SO _x	0.099955
NO _x	2.887749
СО	0.198345
PM 10	0.013773

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	0.012051
Pb	0.000000
NH ₃	0.000000
CO ₂ e	303.7

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine
------------	---	--------

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	52
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	273
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0

Number of Annual Trim Test(s) per Aircraft:

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
· · · ·	

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)

0

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, add 87 T-7A low-altitude operations in IR-068.

- Activity Start Date Start Month: 1

Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
CO	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.457652	PM 2.5	0.028219
SO _x	0.218172	Pb	0.000000
NO _x	6.666520	NH ₃	0.000000
CO	0.390571	CO ₂ e	659.9
PM 10	0.032250		

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1		
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:			
3.2.2 Aircraft & Engines H	Emission Factor(s)		
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	Contact Air Quality Sub	uel) ject Matter Expert for More Info	rmation regarding this
3.3 Flight Operations			
3.3.1 Flight Operations As	sumptions		
 Flight Operations Number of Aircraft: Number of Annual LTOs Number of Annual TGOs Number of Annual Trim Default Settings Used: N 	s (Touch-and-Go) cycl		52 87 0 0
- Flight Operations TIMs (Tir Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	s): : ns):] (mins): iins):	0 27.48 0 0 0 0	
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	12 27 9 9 3		
3.3.2 Flight Operations Fo	ormula(s)		
- Aircraft Emissions per Mod	e for LTOs per Year	2000	

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, add 108 T-7A low-altitude operations in IR-091.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations			
Number of Aircraft:			52
Number of Annual LTO	Ds (Landing and Take-off)	cycles for all Aircraft:	108
	Os (Touch-and-Go) cycles		0
Number of Annual Tri	· · ·		0
- Default Settings Used:	No		
- Flight Operations TIMs (1	fime In Mode)		
Taxi/Idle Out [Idle] (mi	ins):	0	
Takeoff [Military] (mins):		27.48	
Takeoff [After Burn] (r	nins):	0	
Climb Out [Intermedia	te] (mins):	0	
Approach [Approach] (mins):	0	
Taxi/Idle In [Idle] (min	s):	0	
- Trim Test			
Idle (mins):	12		
Approach (mins):	27		
Intermediate (mins):	9		
Military (mins):	9		
AfterBurn (mins):	3		

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

		1 40001 (18)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4
----------	-------	-------	-------	-------	-------	--------	--------	-------

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, add 186 T-7A low-altitude operationss in VR-1014.

- Activity Start Date

Start	Month:	1
Start	Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	1.356109
SO _x	0.644461
NO _x	19.743072
СО	1.147806
PM 10	0.095568

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1948.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.356109	PM 2.5	0.083622
SO _x	0.644461	Pb	0.000000
NO _x	19.743072	NH ₃	0.000000
СО	1.147806	CO ₂ e	1948.9

PM 10	0.095568	
5.2 Aircraft & Engines		
5.2.1 Aircraft & Engine	s Assumptions	
- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After bur Number of Engines:	T-7A F404-GE-102 Trainer	
- Aircraft & Engine Surrog Is Aircraft & Engine a Original Aircraft Nam Original Engine Name	Surrogate? No e:	
5.2.2 Aircraft & Engine	s Emission Factor(s)	
	ions Factors (lb/1000lb fuel) . Contact Air Quality Subject Matter Expert for More Inf ors.	formation regarding this
5.3 Flight Operations		
5.3.1 Flight Operations	Assumptions	
Number of Annual TC	Os (Landing and Take-off) cycles for all Aircraft: Os (Touch-and-Go) cycles for all Aircraft: im Test(s) per Aircraft:	52 186 0 0
- Default Settings Used:	No	
- Flight Operations TIMs (Taxi/Idle Out [Idle] (n Takeoff [Military] (mi Takeoff [After Burn] (Climb Out [Intermedi Approach [Approach] Taxi/Idle In [Idle] (mi	nins): 0 ns): 38.09 mins): 0 ate] (mins): 0 (mins): 0	
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	12 27 9 9 3	
5.3.2 Flight Operations	Formula(s)	

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2028 and 2029: Starting in 2028, add 78 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)	
VOC	0.480021	
SO _x	0.228462	
NO _x	6.990315	
СО	0.407902	
PM 10	0.033827	

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	0.480021	
SO _x	0.228462	
NO _x	6.990315	
CO	0.407902	
PM 10	0.033827	

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	52
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	78
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins): 0	
Takeoff [Military] (mins): 32	2.15
Takeoff [After Burn] (mins): 0	
Climb Out [Intermediate] (mins): 0	
Approach [Approach] (mins): 0	
Taxi/Idle In [Idle] (mins):0	

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (10/117)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, remove 165 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.017125
SO _x	-0.024431
NO _x	-0.043839
СО	-0.707585
PM 10	-0.025801

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.000913
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-73.8

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.017125	PM 2.5	-0.000913
SO _x	-0.024431	Pb	0.000000
NO _x	-0.043839	NH ₃	0.000000
СО	-0.707585	CO ₂ e	-73.8
PM 10	-0.025801		

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
5	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	165
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	0	
	LTO			

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

 County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Parelatory: Area(a): NOT IN A RECULTATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, remove 51 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes		
End Month:	N/A		
End Year:	N/A		

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.038891
SO _x	-0.055485
NO _x	-0.099561
СО	-1.606979
PM 10	-0.058596

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002074
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-167.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.038891	PM 2.5	-0.002074
SO _x	-0.055485	Pb	0.000000
NO _x	-0.099561	NH ₃	0.000000
CO	-1.606979	CO ₂ e	-167.7
PM 10	-0.058596		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- An er art & Englite Emissions Factors (10/100010 fuer)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	
Number of Annual Trim Test(s) per Aircraft:	

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

J				
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

Regulatory Alea(s). NOT IN A RECOLATOR TAKEA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, remove 66 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month: 1 Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-6.677130
SO _x	-1.259727
NO _x	-3.049826
CO	-83.869115
PM 10	-1.963950

Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.050092
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3807.4

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-6.677130
SO _x	-1.259727
NO _x	-3.049826
CO	-83.869115
PM 10	-1.963950

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-1.050092
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-3807.4

9.2 Aircraft & Engines

_

9.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

The chart of Englise Emissions I actors (16/100016 fact)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	66
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	12

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
- Trim Test	
Idle (mins): 12	

rule (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, remove 114 T-38C low-altitude operations in VR-1014.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.120498
SO _x	-0.171910
NO _x	-0.308474
СО	-4.978966
PM 10	-0.181550

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006427
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-519.6

- Activity Emissions	[Flight Operations	(includes Trim T	est & APU) part]:
----------------------	--------------------	------------------	-------------------

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.120498	PM 2.5	-0.006427
SO _x	-0.171910	Pb	0.000000
NO _x	-0.308474	NH ₃	0.000000
СО	-4.978966	CO ₂ e	-519.6
PM 10	-0.181550		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

		VOC	0.0		00	DN / 10	DIAAZ	00
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	114
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel VOC Flow	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	------------------	-----------------	-----------------	----	-------	--------	-------------------

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
- Activity Description:

2028 and 2029: Starting in 2028, remove 42 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.037471
SO _x	-0.053458
NO _x	-0.095925
CO	-1.548294
PM 10	-0.056456

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001998
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)			
VOC	-0.037471			
SO _x	-0.053458			
NO _x	-0.095925			
СО	-1.548294			
PM 10	-0.056456			

t & APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001998
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.6

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

0

- Flight Operations		
Number of Aircraft:		68
Number of Annual LTOs (Landing and Ta	ake-off) cycles for all Aircraft:	42
Number of Annual TGOs (Touch-and-Go)	cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircr	aft:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	0	
Takeoff [Military] (mins):	32.15	
Takeoff [After Burn] (mins):	0	
Climb Out [Intermediate] (mins):	0	
Approach [Approach] (mins):	0	

Approacn [Approacn] (mins): Taxi/Idle In [Idle] (mins):

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

_

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	Number per Ai		Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
--	------------------	--	------------------------------------	-------------------	-------------	--------------

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, add 273 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.195744
SO _x	0.099955
NO _x	2.887749
СО	0.198345
PM 10	0.013773

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.012051
Pb	0.000000
NH ₃	0.000000
CO ₂ e	303.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.195744	PM 2.5	0.012051
SO _x	0.099955	Pb	0.000000
NO _x	2.887749	NH ₃	0.000000
СО	0.198345	CO ₂ e	303.7

A ID CONFORMITS/ A DDI ICA DII ITS/ MODEL DEDODT DETAT

PM 10	0.013773		
2.2 Aircraft &	Engines		
2.2.1 Aircraft	& Engines Assumptions		
Aircraft & Engi			
Aircraft Desig	nation: T-7A		
Engine Mode Primary Fun			
Aircraft has A			
Number of E	igines: 1		
Aircraft & Engi			
Is Aircraft & Original Airc	Engine a Surrogate? No		
Original Airc Original Engi			
222 Aircraft	& Engines Emission Factor(s)		
	0		
Proprietary Int	ne Emissions Factors (lb/1000lb fuel) Formation. Contact Air Ouality Subject M	atter Expert for More Information regardir	ng th
			-
engine's Emiss			-
-	ion Factors.		-
2.3 Flight Ope	ion Factors.		-
12.3 Flight Ope	ion Factors. rations erations Assumptions		-
12.3 Flight Ope 12.3.1 Flight Ope Flight Operation Number of Ai	ion Factors. rations verations Assumptions s rcraft:	9	-
 12.3 Flight Ope 12.3.1 Flight Operation Flight Operation Number of Air Numb	ion Factors. rations erations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyc	9 eles for all Aircraft: 273	-
12.3 Flight Ope 12.3.1 Flight Ope Flight Operation Number of Ai Number of Ai Number of Ai	ion Factors. rations verations Assumptions s rcraft:	9 eles for all Aircraft: 273	
 12.3 Flight Ope 12.3.1 Flight Operation Flight Operation Number of Air Number of Air Number	ion Factors. rations eerations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyo mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft:	eles for all Aircraft: 273 all Aircraft: 0	
12.3 Flight Ope 12.3.1 Flight Op Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Number of Ai	ion Factors. rations eerations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No	eles for all Aircraft: 273 all Aircraft: 0	
 12.3 Flight Ope 12.3.1 Flight Operation 12.3.1 Flight Operation Number of Air Number of Ai	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyc nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyc nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7	eles for all Aircraft: 273 all Aircraft: 0 0	
 2.3 Flight Ope 2.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
2.3 Flight Ope 2.3.1 Flight Op Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In Approach [A]	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 cary] (mins): 3.7 r Burn] (mins): 0 oproach] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In 	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 cary] (mins): 3.7 r Burn] (mins): 0 oproach] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In Approach [A] Taxi/Idle In [ion Factors. rations perations Assumptions s rcraft: unual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 proach] (mins): 0 dle] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): 	ion Factors. rations perations Assumptions s rcraft: unual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 proach] (mins): 0 12	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): Approach (m 	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyclos mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 termediate] (mins): 0 oproach] (mins): 0 Il2 ns): 27	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyclonal TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 termediate] (mins): 0 oproach] (mins): 0 dle] (mins): 0 12 ns): 27 (mins): 9 s): 9	eles for all Aircraft: 273 all Aircraft: 0 0	

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - **County:** Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, add 87 T-7A low-altitude operations in IR-068.

-	Activity	Start Date
---	----------	------------

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
СО	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.457652	PM 2.5	0.028219
SO _x	0.218172	Pb	0.000000
NO _x	6.666520	NH ₃	0.000000
СО	0.390571	CO ₂ e	659.9
PM 10	0.032250		

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Parallatary: Ama(a): NOT IN A RECULATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, add 108 T-7A low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]: Pollutant Emissions Per Year (TONs) Pollutant Emissions Per Year (TONs)

VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

AfterBurn (mins):

14.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used:	No			
- Flight Operations TIMs (T	ime In Mode)			
Taxi/Idle Out [Idle] (mi	ns):	0		
Takeoff [Military] (mins):		27.48		
Takeoff [After Burn] (mins):		0		
Climb Out [Intermediat	0			
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (mins): 0				
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins): 9				

3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, add 186 T-7A low-altitude operations in VR-1014.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)			
VOC	1.356109			
SO _x	0.644461			
NO _x	19.743072			
CO	1.147806			
PM 10	0.095568			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1948.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.356109	PM 2.5	0.083622
SO _x	0.644461	Pb	0.000000
NO _x	19.743072	NH ₃	0.000000
CO	1.147806	CO ₂ e	1948.9
PM 10	0.095568		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	186
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

0
38.09
0
0
0
0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer
1	LTO 0.25	No	4501687C	Hamilton Sundstrand

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, add 78 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
СО	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
CO	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	0	
Takeoff [Military] (mins):	32.15	
Takeoff [After Burn] (mins):	0	
Climb Out [Intermediate] (mins):	0	
Approach [Approach] (mins):	0	
Taxi/Idle In [Idle] (mins):	0	
- Trim Test		
Idle (mine). 12		

I filli I est	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9

Military (mins):	9
AfterBurn (mins):	3

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)TD: Test Duration (min)60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, remove 273 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)					
VOC	-0.028333					
SO _x -0.040422						
NO _x	-0.072533					
СО	-1.170732					
PM 10	-0.042689					

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001511
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-122.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.028333	PM 2.5	-0.001511
SO _x	-0.040422	Pb	0.000000
NO _x	-0.072533	NH ₃	0.000000
СО	-1.170732	CO ₂ e	-122.2
PM 10	-0.042689		

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

The chart & Englise Emission's Lactor's (16/100010 Lact)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	273
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	-	
	LTO			

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----	----	-------	--------	-------------------

17.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, remove 87 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.066344
SO _x	-0.094650
NO _x	-0.169840
СО	-2.741317
PM 10	-0.099958

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.003538
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-286.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.066344
SO _x	-0.094650
NO _x	-0.169840
CO	-2.741317
PM 10	-0.099958

Pollutant Emissions Per Year (TONs) PM 2.5 -0.003538 Pb 0.000000 NH₃ 0.000000 CO₂e -286.1

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, remove 108 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.082358
SO _x	-0.117497
NO _x	-0.210835
СО	-3.403014
PM 10	-0.124085

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.004392
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-355.1

- Activity Emissions	[Flight Operation	s (includes Trim	Test & APU) part]:
----------------------	-------------------	------------------	--------------------

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.082358	PM 2.5	-0.004392
SO _x	-0.117497	Pb	0.000000
NO _x	-0.210835	NH ₃	0.000000
СО	-3.403014	CO ₂ e	-355.1
PM 10	-0.124085		

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

		VOC	0.0		00	DN / 10	DICAS	60
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	108
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19.4 Auxiliary Power Unit (APU)

19.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

19.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel VOC Flow	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	------------------	-----------------	-----------------	----	-------	--------	-------------------

19.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, remove 186 T-38C low-altitude operations in VR-1014.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant Emissions Per Year (TON	
VOC	-0.196602
SO _x	-0.280485
NO _x	-0.503300
CO	-8.123575
PM 10	-0.296213

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010485
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Polluta
VOC	-0.196602	PM 2.5
SO _x	-0.280485	Pb
NO _x	-0.503300	NH ₃
CO	-8.123575	CO ₂ e
PM 10	-0.296213	

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010485
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.7

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	a							
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

⁻ Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	186
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
raziviute in fruitej (minis).	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines TGO: Number of Touch-and-Go Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20.4 Auxiliary Power Unit (APU)

20.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	(
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
_	LTO			

20.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designat	tion	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
		FIOW							

20.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, remove 78 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.069589
SO _x	-0.099280
NO _x	-0.178147
СО	-2.875404
PM 10	-0.104847

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.003711
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-300.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	
VOC	-0.069589	PM 2.5	
SO _x	-0.099280	Pb	
NO _x	-0.178147	NH ₃	
CO	-2.875404	CO ₂ e	
PM 10	-0.104847		

Pollutant	Emissions Per Year (TONs)			
PM 2.5	-0.003711			
Pb	0.000000			
NH ₃	0.000000			
CO ₂ e	-300.1			

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	78
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	32.15
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines

NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21.4 Auxiliary Power Unit (APU)

21.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer		
per Aircraft	Hours for Each	Source?				
	LTO					

21.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fue Flow		SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
-------------------------	--	-----	-----	----	-------	--------	-------------------

21.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

1. General Information: The Air Force's Air Conformity Applicability Model (ACAM) was used to perform an analysis to assess the potential air quality impact/s associated with the action in accordance with the Air Force Manual 32-7002, Environmental Compliance and Pollution Prevention; the Environmental Impact Analysis Process (EIAP, 32 CFR 989); and the General Conformity Rule (GCR, 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base: COLUMBUS AFB

State: Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN **Regulatory Area(s):** NOT IN A REGULATORY AREA; Birmingham, AL

b. Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

c. Project Number/s (if applicable):

d. Projected Action Start Date: 1 / 2028

e. Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

f. Point of Contact:

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

2. Analysis: Total combined direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the "worst-case" and "steady state" (net gain/loss upon action fully implemented) emissions. General Conformity under the Clean Air Act, Section 1.76 has been evaluated for the action described above according to the requirements of 40 CFR 93, Subpart B.

Based on the analysis, the requirements of this rule are:

_____ applicable __X__ not applicable

Conformity Analysis Summary:

2028							
Pollutant	Action Emissions	GENERAL (CONFORMITY				
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)				
NOT IN A REGULATORY AREA							
VOC	2.793						
NOx	43.887						
СО	-8.292						
SOx	1.085						
PM 10	-0.183						
PM 2.5	0.174						
Pb	0.000						
NH3	0.000						
CO2e	3282.9						
Birmingham, AL							
VOC	1.414	100	No				
NOx	22.279	100	No				
СО	-4.340						
SOx	0.548	100	No				
PM 10	-0.098						
PM 2.5	0.088	100	No				
Pb	0.000						
NH3	0.000	100	No				
CO2e	1659.1						
Birmingham, AL							
VOC	1.678	100	No				
NOx	26.329	100	No				
СО	-4.972						
SOx	0.648	100	No				
PM 10	-0.109						
PM 2.5	0.105	100	No				
Pb	0.000						
NH3	0.000	100	No				
CO2e	1958.7						

2029

Pollutant	Action Emissions	GENERAL CONFORMITY	
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	2.793		
NOx	43.887		
СО	-8.292		
SOx	1.085		
PM 10	-0.183		

PM 2.5	0.174		
Pb	0.000		
NH3	0.000		
CO2e	3282.9		
	3282.9		
Birmingham, AL	· · · · ·		
VOC	1.414	100	No
NOx	22.279	100	No
CO	-4.340		
SOx	0.548	100	No
PM 10	-0.098		
PM 2.5	0.088	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1659.1		
Birmingham, AL			
VOC	1.678	100	No
NOx	26.329	100	No
СО	-4.972		
SOx	0.648	100	No
PM 10	-0.109		
PM 2.5	0.105	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	1958.7		

2030

2030			
Pollutant Action Emissions		GENERAL O	CONFORMITY
	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)
NOT IN A REGULATORY	AREA		
VOC	5.408		
NOx	87.315		
СО	-23.977		
SOx	1.914		
PM 10	-0.635		
PM 2.5	0.339		
Pb	0.000		
NH3	0.000		
CO2e	5794.3		
Birmingham, AL			
VOC	2.741	100	No
NOx	44.333	100	No
СО	-12.289		
SOx	0.972	100	No
PM 10	-0.328		
PM 2.5	0.172	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	2941.7		
Birmingham, AL			
VOC	3.248	100	No
NOx	52.381	100	No
СО	-14.415		
SOx	1.141	100	No

PM 10	-0.380		
PM 2.5	0.204	100	No
Pb	0.000		
NH3	0.000	100	No
CO2e	3450.7		

2031 - (Steady State)

Pollutant Action Emissions GENERAL CONFORMITY			CONFORMITY		
Tonutant	(ton/yr)	Threshold (ton/yr)	Exceedance (Yes or No)		
NOT IN A REGULATORY AREA					
VOC	5.408				
NOx	87.315				
СО	-23.977				
SOx	1.914				
PM 10	-0.635				
PM 2.5	0.339				
Pb	0.000				
NH3	0.000				
CO2e	5794.3				
Birmingham, AL					
VOC	2.741	100	No		
NOx	44.333	100	No		
СО	-12.289				
SOx	0.972	100	No		
PM 10	-0.328				
PM 2.5	0.172	100	No		
Pb	0.000				
NH3	0.000	100	No		
CO2e	2941.7				
Birmingham, AL					
VOC	3.248	100	No		
NOx	52.381	100	No		
СО	-14.415				
SOx	1.141	100	No		
PM 10	-0.380				
PM 2.5	0.204	100	No		
Pb	0.000				
NH3	0.000	100	No		
CO2e	3450.7				

None of estimated emissions associated with this action are above the conformity threshold values established at 40 CFR 93.153 (b); Therefore, the requirements of the General Conformity Rule are not applicable.

Cumpont

Carolyn Hein, Contractor

2/17/2023 DATE

1. General Information

- Action Location

Base: COLUMBUS AFB

State: Alabama, Arkansas, Mississippi, Tennessee

County(s): Autauga, AL; Bibb, AL; Blount, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Colbert, AL; Coosa, AL; Cullman, AL; Dallas, AL; Elmore, AL; Franklin, AL; Greene, AL; Hale, AL; Jefferson, AL; Lauderdale, AL; Lawrence, AL; Marengo, AL; Marion, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Sumter, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Walker, AL; Wilcox, AL; Winston, AL; Lee, AR; Phillips, AR; Alcorn, MS; Benton, MS; Bolivar, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Coahoma, MS; Grenada, MS; Itawamba, MS; Kemper, MS; Lafayette, MS; Lee, MS; Leflore, MS; Lowndes, MS; Marshall, MS; Monroe, MS; Montgomery, MS; Noxubee, MS; Panola, MS; Pontotoc, MS; Prentiss, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tate, MS; Tippah, MS; Tishomingo, MS; Tunica, MS; Union, MS; Webster, MS; Yalobusha, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN, McNairy, TN, Wayne, TN
Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Action Title: T-7A Recapitalization at Columbus AFB - Alternative 3

- Project Number/s (if applicable):

- Projected Action Start Date: 1 / 2028

- Action Purpose and Need:

The purpose of the Proposed Action is to continue the T-7A recapitalization program by recapitalizing Columbus AFB to prepare pilots to operate the more technologically advanced T-7A aircraft.

The Proposed Action is needed because the current training practices with the older T-38C aircraft fail to prepare pilots for the technological advancements of fourth and fifth generation aircraft. By 2031, more than 60 percent of the Combat Air Force will be comprised of fifth generation aircraft, requiring a modern and capable training platform with capabilities beyond those currently available in the T-38C. Additionally, training systems provided with the newer T-7A aircraft allow for enhanced and improved flight and simulator training. The T-7A recapitalization program will allow DAF to provide more efficient and effective instructor and pilot training for operating fourth and fifth generation aircraft. T-7A recapitalization at Columbus AFB would allow DAF to continue the geographically phased T-7A recapitalization sequence ensuring DAF pilot training requirements are met.

- Action Description:

The Proposed Action is recapitalization of the T-38C Talon flight training program at Columbus AFB with T-7A Red Hawk aircraft. Recapitalization would entail introduction of T-7A aircraft and flight operations at Columbus AFB and associated special use airspace to replace all T-38C aircraft assigned to the installation; introduction of nighttime (between 10 a.m. and 7 a.m.) T-7A flight operations; changes to the number of personnel and dependents in the Columbus AFB region; and construction and upgrade of operations, support, and maintenance facilities.

For Alternative 1, Columbus AFB would receive 61 T-7A aircraft and perform sufficient operations for sustaining pilot training while simultaneously phasing out the T-38C aircraft. Alternative 2 would also result in 61 T-7A aircraft being delivered to Columbus AFB; however, T-7A operations would be performed at an intensity approximately 25 percent greater than Alternative 1 to cover a scenario in which DAF requires a surge or increase in pilot training operations above the current plan. For Alternative 3, Columbus AFB would receive 77 T-7A aircraft and perform T-7A operations at an intensity identical to Alternative 2. Alternative 3 also incorporates a MILCON project alternative to construct 12 additional shelters for the T-7A aircraft. Alternative 3 is intended to provide DAF with operational flexibility, and inclusion of this alternative in the EIS provides analysis to evaluate future capacity needs. The No Action Alternative would not implement T-7A recapitalization at Columbus AFB.

- Point of Contact

Name:	Carolyn Hein
Title:	Contractor
Organization:	HDR
Email:	
Phone Number:	

- Activity List:

	Activity Type	Activity Title
2.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)
3.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)
4.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)
5.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)
6.	Aircraft	2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)
7.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)
8.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)
9.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)
10.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)
11.	Aircraft	2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
12.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-066)
13.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-068)
14.	Aircraft	2030 T-7A MTR Low-Altitude Operations (IR-091)
15.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1014)
16.	Aircraft	2030 T-7A MTR Low-Altitude Operations (VR-1031)
17.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-066)
18.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-068)
19.	Aircraft	2030 T-38C MTR Low-Altitude Operations (IR-091)
20.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1014)
21.	Aircraft	2030 T-38C MTR Low-Altitude Operations (VR-1031)

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

2. Aircraft

2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, add 273 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.195744
SO _x	0.099955
NO _x	2.887749
СО	0.198345
PM 10	0.013773

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.012051
Pb	0.000000
NH ₃	0.000000
CO ₂ e	303.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	
VOC	0.195744	
SO _x	0.099955	
NO _x	2.887749	
СО	0.198345	
PM 10	0.013773	

z & APU) part[:		
Pollutant	Emissions Per Year (TONs)	
PM 2.5	0.012051	
Pb	0.000000	
NH ₃	0.000000	
CO ₂ e	303.7	

2.2 Aircraft & Engines

2.2.1 Aircraft & Engines Assumptions

- Aircraft	&	Engine
------------	---	--------

Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

2.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

2.3 Flight Operations

2.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	273
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0

Number of Annual Trim Test(s) per Aircraft:

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
· · · ·	

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)

0

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

2.4 Auxiliary Power Unit (APU)

2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

2.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

3. Aircraft

3.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, add 87 T-7A low-altitude operations in IR-068.

- Activity Start Date Start Month: 1

Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
CO	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.457652	PM 2.5	0.028219
SO _x	0.218172	Pb	0.000000
NO _x	6.666520	NH ₃	0.000000
СО	0.390571	CO ₂ e	659.9
PM 10	0.032250		

3.2 Aircraft & Engines

3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine Aircraft Designation: Engine Model: Primary Function: Aircraft has After burn: Number of Engines:	T-7A F404-GE-102 Trainer Yes 1		
- Aircraft & Engine Surrogat Is Aircraft & Engine a Su Original Aircraft Name: Original Engine Name:			
3.2.2 Aircraft & Engines H	Emission Factor(s)		
- Aircraft & Engine Emission Proprietary Information. C engine's Emission Factors.	Contact Air Quality Sul	uel) oject Matter Expert for More Info	ormation regarding this
3.3 Flight Operations			
3.3.1 Flight Operations As	sumptions		
Number of Annual TGOs Number of Annual Trim	s (Touch-and-Go) cyc	off) cycles for all Aircraft: les for all Aircraft:	68 87 0 0
- Flight Operations TIMs (Tir Taxi/Idle Out [Idle] (min Takeoff [Military] (mins) Takeoff [After Burn] (mi Climb Out [Intermediate Approach [Approach] (m Taxi/Idle In [Idle] (mins)	s): :: ns):] (mins): iins):	0 27.48 0 0 0 0	
- Trim Test Idle (mins): Approach (mins): Intermediate (mins): Military (mins): AfterBurn (mins):	12 27 9 9 3		
3.3.2 Flight Operations Fo	ormula(s)		
- Aircraft Emissions per Mod	e for LTOs per Year	2/2000	

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)

60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

3.4 Auxiliary Power Unit (APU)

3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

3.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

4. Aircraft

4.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, add 108 T-7A low-altitude operationss in IR-091.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

4.2 Aircraft & Engines

4.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

.....

4.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel)
 Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

4.3 Flight Operations

4.3.1 Flight Operations Assumptions

- Flight Operations					
Number of Aircraft:			68		
Number of Annual LT(Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:				
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:					
Number of Annual Trim Test(s) per Aircraft:					
- Default Settings Used:	No				
- Flight Operations TIMs (7	Гime In Mode)				
Taxi/Idle Out [Idle] (mi	Taxi/Idle Out [Idle] (mins): 0				
Takeoff [Military] (min	is):	27.48			
Takeoff [After Burn] (r	nins):	0			
Climb Out [Intermedia	te] (mins):	0			
Approach [Approach] ((mins):	0			
Taxi/Idle In [Idle] (min	s):	0			
- Trim Test					
Idle (mins):	12				
Approach (mins):	27				
Intermediate (mins):	9				
Military (mins):	9				
AfterBurn (mins):	3				

4.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

4.4 Auxiliary Power Unit (APU)

4.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

4.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

		1 40001 (18)					
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4
----------	-------	-------	-------	-------	-------	--------	--------	-------

4.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

5. Aircraft

5.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, add 186 T-7A low-altitude operations in VR-1014.

- Activity Start Date

Start	Month:	1
Start	Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)		
VOC	1.356109		
SO _x	0.644461		
NO _x	19.743072		
СО	1.147806		
PM 10	0.095568		

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1948.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.356109	PM 2.5	0.083622
SO _x	0.644461	Pb	0.000000
NO _x	19.743072	NH ₃	0.000000
СО	1.147806	CO ₂ e	1948.9

DM 10 0.000	55(9		
PM 10 0.093	5568		
5.2 Aircraft & Engines			
5.2.1 Aircraft & Engines Assu	mptions		
8	04-GE-102 iner		
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrog Original Aircraft Name: Original Engine Name:	gate? No		
5.2.2 Aircraft & Engines Emis	sion Factor(s)		
- Aircraft & Engine Emissions Fac Proprietary Information. Conta engine's Emission Factors.			nformation regarding this
5.3 Flight Operations			
5.3.1 Flight Operations Assum	ptions		
- Flight Operations Number of Aircraft: Number of Annual LTOs (La Number of Annual TGOs (To Number of Annual Trim Test	uch-and-Go) cycles		68 186 0 0
- Default Settings Used: No			
- Flight Operations TIMs (Time In Taxi/Idle Out [Idle] (mins): Takeoff [Military] (mins): Takeoff [After Burn] (mins): Climb Out [Intermediate] (mi Approach [Approach] (mins): Taxi/Idle In [Idle] (mins):	ins):	0 38.09 0 0 0 0	
- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3			
5.3.2 Flight Operations Formu	lla(s)		

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

5.4 Auxiliary Power Unit (APU)

5.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

5.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

5.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

6. Aircraft

6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2028 and 2029: Starting in 2028, add 78 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
СО	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
CO	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

6.2 Aircraft & Engines

6.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

6.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

6.3 Flight Operations

6.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	78
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	32.15
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

6.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

6.4 Auxiliary Power Unit (APU)

6.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

6.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (10/117)								
Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

6.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

7. Aircraft

7.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2028 and 2029: Starting in 2028, remove 165 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.017125
SO _x	-0.024431
NO _x	-0.043839
СО	-0.707585
PM 10	-0.025801

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.000913
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-73.8

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.017125	PM 2.5	-0.000913
SO _x	-0.024431	Pb	0.000000
NO _x	-0.043839	NH ₃	0.000000
СО	-0.707585	CO ₂ e	-73.8
PM 10	-0.025801		

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

7.2 Aircraft & Engines

7.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2
5	

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

7.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

7.3 Flight Operations

7.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	165
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

7.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

7.4 Auxiliary Power Unit (APU)

7.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	0	
	LTO			

7.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

7.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

8. Aircraft

8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

 County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS
 Parelatory: Area(a): NOT IN A RECULTATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2028 and 2029: Starting in 2028, remove 51 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes		
End Month:	N/A		
End Year:	N/A		

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.038891
SO _x	-0.055485
NO _x	-0.099561
СО	-1.606979
PM 10	-0.058596

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002074
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-167.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.038891	PM 2.5	-0.002074
SO _x	-0.055485	Pb	0.000000
NO _x	-0.099561	NH ₃	0.000000
CO	-1.606979	CO ₂ e	-167.7
PM 10	-0.058596		

8.2 Aircraft & Engines

8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

8.2.2 Aircraft & Engines Emission Factor(s)

- An er art & Englite Emissions Factors (10/100010 fuer)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

8.3 Flight Operations

8.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	
Number of Annual Trim Test(s) per Aircraft:	

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

8.4 Auxiliary Power Unit (APU)

8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

J				
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

8.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

9. Aircraft

9.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Regulatory Area(s): NOT IN A REGULATORY AREA

Regulatory Alea(s). NOT IN A RECOLATOR TAKEA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2028 and 2029: Starting in 2028, remove 66 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month: 1 Start Year: 2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.050330
SO _x	-0.071804
NO _x	-0.128844
СО	-2.079620
PM 10	-0.075830

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002684
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-217.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.050330
SO _x	-0.071804
NO _x	-0.128844
CO	-2.079620
PM 10	-0.075830

& APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.002684
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-217.0

9.2 Aircraft & Engines

_

9.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

The chart of Englise Emissions I actors (16/100016 fact)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

9.3 Flight Operations

9.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	66
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
- Trim Test	
Idle (mins): 12	

rule (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

9.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs)

AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

9.4 Auxiliary Power Unit (APU)

9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

9.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

10. Aircraft

10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS
 Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2028 and 2029: Starting in 2028, remove 114 T-38C low-altitude operations in VR-1014.

- Activity Start Date

Start Month:1Start Year:2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.120498
SO _x	-0.171910
NO _x	-0.308474
СО	-4.978966
PM 10	-0.181550

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.006427
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-519.6

- Activity Emissions	[Flight Operations	(includes Trim T	est & APU) part]:
----------------------	--------------------	------------------	-------------------

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.120498	PM 2.5	-0.006427
SO _x	-0.171910	Pb	0.000000
NO _x	-0.308474	NH ₃	0.000000
СО	-4.978966	CO ₂ e	-519.6
PM 10	-0.181550		

10.2 Aircraft & Engines

10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

		VOC	0.0		00	DN / 10	DIAAZ	00
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

10.3 Flight Operations

10.3.1 Flight Operations Assumptions

Number of Aircraft:	68
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	114
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

10.4 Auxiliary Power Unit (APU)

10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel VOC Flow	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	------------------	-----------------	-----------------	----	-------	--------	-------------------

10.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

11. Aircraft

11.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2028 and 2029 T-38C MTR Low-Altitude Operations (VR-1031)
- Activity Description:

2028 and 2029: Starting in 2028, remove 42 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2028

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.037471
SO _x	-0.053458
NO _x	-0.095925
CO	-1.548294
PM 10	-0.056456

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001998
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.6

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)			
VOC	-0.037471			
SO _x	-0.053458			
NO _x	-0.095925			
СО	-1.548294			
PM 10	-0.056456			

t & APU) part]:	
Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001998
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-161.6

11.2 Aircraft & Engines

11.2.1 Aircraft & Engines Assumptions

-	Aircraft	&	Engine
---	----------	---	--------

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

11.3 Flight Operations

11.3.1 Flight Operations Assumptions

0

- Flight Operations		
Number of Aircraft:		68
Number of Annual LTOs (Landing and Ta	ake-off) cycles for all Aircraft:	42
Number of Annual TGOs (Touch-and-Go)	cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircr	aft:	0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	0	
Takeoff [Military] (mins):	32.15	
Takeoff [After Burn] (mins):	0	
Climb Out [Intermediate] (mins):	0	
Approach [Approach] (mins):	0	

Approacn [Approacn] (mins): Taxi/Idle In [Idle] (mins):

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

_

11.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000poundsEF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesTGO: Number of Touch-and-Go Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

11.4 Auxiliary Power Unit (APU)

11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	Number per Ai		Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
--	------------------	--	------------------------------------	-------------------	-------------	--------------

11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

11.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

12. Aircraft

12.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, add 273 T-7A low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.195744
SO _x	0.099955
NO _x	2.887749
СО	0.198345
PM 10	0.013773

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.012051
Pb	0.000000
NH ₃	0.000000
CO ₂ e	303.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.195744	PM 2.5	0.012051
SO _x	0.099955	Pb	0.000000
NO _x	2.887749	NH ₃	0.000000
СО	0.198345	CO ₂ e	303.7

A ID CONFORMITS/ A DDI ICA DII ITS/ MODEL DEDODT DETAT

PM 10	0.013773		
2.2 Aircraft &	Engines		
2.2.1 Aircraft	& Engines Assumptions		
Aircraft & Engi			
Aircraft Desig	nation: T-7A		
Engine Mode Primary Fun			
Aircraft has A			
Number of E	igines: 1		
Aircraft & Engi			
Is Aircraft & Original Airc	Engine a Surrogate? No		
Original Airc Original Engi			
222 Aircraft	& Engines Emission Factor(s)		
	0		
Proprietary Int	ne Emissions Factors (lb/1000lb fuel) Formation. Contact Air Ouality Subject M	atter Expert for More Information regardir	ng th
			-
engine's Emiss			-
-	ion Factors.		-
2.3 Flight Ope	ion Factors.		-
12.3 Flight Ope	ion Factors. rations erations Assumptions		-
12.3 Flight Ope 12.3.1 Flight Ope Flight Operation Number of Ai	ion Factors. rations verations Assumptions s rcraft:	9	-
 12.3 Flight Ope 12.3.1 Flight Operation Flight Operation Number of Air Numb	ion Factors. rations erations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyc	9 eles for all Aircraft: 273	-
12.3 Flight Ope 12.3.1 Flight Ope Flight Operation Number of Ai Number of Ai Number of Ai	ion Factors. rations verations Assumptions s rcraft:	9 eles for all Aircraft: 273	
 12.3 Flight Ope 12.3.1 Flight Operation Flight Operation Number of Air Number of Air Number	ion Factors. rations eerations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyo mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft:	eles for all Aircraft: 273 all Aircraft: 0	
12.3 Flight Ope 12.3.1 Flight Op Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Number of Ai	ion Factors. rations eerations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No	eles for all Aircraft: 273 all Aircraft: 0	
 12.3 Flight Ope 12.3.1 Flight Operation 12.3.1 Flight Operation Number of Air Number of Ai	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyc nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyc nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7	eles for all Aircraft: 273 all Aircraft: 0 0	
 2.3 Flight Ope 2.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
2.3 Flight Ope 2.3.1 Flight Op Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In Approach [A]	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 cary] (mins): 3.7 r Burn] (mins): 0 oproach] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In 	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyd mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 cary] (mins): 3.7 r Burn] (mins): 0 oproach] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [In Approach [A] Taxi/Idle In [ion Factors. rations perations Assumptions s rcraft: unual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 proach] (mins): 0 dle] (mins): 0	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): 	ion Factors. rations perations Assumptions s rcraft: unual LTOs (Landing and Take-off) cyd nual TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 proach] (mins): 0 12	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): Approach (m 	ion Factors. rations perations Assumptions s rcraft: mual LTOs (Landing and Take-off) cyclos mual TGOs (Touch-and-Go) cycles for mual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 termediate] (mins): 0 oproach] (mins): 0 Il2 ns): 27	eles for all Aircraft: 273 all Aircraft: 0 0	
 12.3 Flight Ope 12.3.1 Flight Operation Number of Ai Number of Ai Number of Ai Number of Ai Default Settings Flight Operation Taxi/Idle Out Takeoff [Mili Takeoff [Afte Climb Out [Ii Approach [A] Taxi/Idle In [Trim Test Idle (mins): 	ion Factors. rations perations Assumptions s rcraft: nual LTOs (Landing and Take-off) cyclonal TGOs (Touch-and-Go) cycles for nual Trim Test(s) per Aircraft: Used: No s TIMs (Time In Mode) [Idle] (mins): 0 ary] (mins): 3.7 r Burn] (mins): 0 termediate] (mins): 0 oproach] (mins): 0 dle] (mins): 0 12 ns): 27 (mins): 9 s): 9	eles for all Aircraft: 273 all Aircraft: 0 0	

12.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs) TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs)

AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

12.4 Auxiliary Power Unit (APU)

12.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

12.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

12.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

13. Aircraft

13.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location
 - **County:** Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, add 87 T-7A low-altitude operations in IR-068.

-	Activity	Start Date
---	----------	------------

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.457652
SO _x	0.218172
NO _x	6.666520
СО	0.390571
PM 10	0.032250

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.028219
Pb	0.000000
NH ₃	0.000000
CO ₂ e	659.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	0.457652	PM 2.5	0.028219
SO _x	0.218172	Pb	0.000000
NO _x	6.666520	NH ₃	0.000000
СО	0.390571	CO ₂ e	659.9
PM 10	0.032250		

13.2 Aircraft & Engines

13.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

13.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

13.3 Flight Operations

13.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

13.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEMPOL: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

13.4 Auxiliary Power Unit (APU)

13.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

13.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

13.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

14. Aircraft

14.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS
 Parallatary: Ama(a): NOT IN A RECULATORY AREA

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, add 108 T-7A low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]: Pollutant Emissions Per Year (TONs) Pollutant Emissions Per Year (TONs)

VOC	0.568120
SO _x	0.270834
NO _x	8.275680
СО	0.484847
PM 10	0.040034

PM 2.5	0.035030
Pb	0.000000
NH ₃	0.000000
CO ₂ e	819.2

14.2 Aircraft & Engines

14.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

 Aircraft Designation: T-7A
 Engine Model: F404-GE-102
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 1
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

14.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

14.3 Flight Operations

AfterBurn (mins):

14.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:				
- Default Settings Used:	No			
- Flight Operations TIMs (T	ime In Mode)			
Taxi/Idle Out [Idle] (mi	ns):	0		
Takeoff [Military] (mins):		27.48		
Takeoff [After Burn] (mins):		0		
Climb Out [Intermediat	0			
Approach [Approach] (mins):	0		
Taxi/Idle In [Idle] (mins): 0				
- Trim Test				
Idle (mins):	12			
Approach (mins):	27			
Intermediate (mins):	9			
Military (mins): 9				

3

14.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

14.4 Auxiliary Power Unit (APU)

14.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

14.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

14.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

15. Aircraft

15.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, add 186 T-7A low-altitude operations in VR-1014.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)			
VOC	1.356109			
SO _x	0.644461			
NO _x	19.743072			
CO	1.147806			
PM 10	0.095568			

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.083622
Pb	0.000000
NH ₃	0.000000
CO ₂ e	1948.9

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	1.356109	PM 2.5	0.083622
SO _x	0.644461	Pb	0.000000
NO _x	19.743072	NH ₃	0.000000
CO	1.147806	CO ₂ e	1948.9
PM 10	0.095568		

15.2 Aircraft & Engines

15.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-7A
Engine Model:	F404-GE-102
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

15.2.2 Aircraft & Engines Emission Factor(s)

Aircraft & Engine Emissions Factors (lb/1000lb fuel) Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

15.3 Flight Operations

15.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	9
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	186
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

0
38.09
0
0
0
0

Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

15.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

15.4 Auxiliary Power Unit (APU)

15.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each	Exempt Source?	Designation	Manufacturer
1	LTO 0.25	No	4501687C	Hamilton Sundstrand

15.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

Designation	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

15.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

16. Aircraft

16.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-7A MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, add 78 T-7A low-altitude operations in VR-1031.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
СО	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

Pollutant	Emissions Per Year (TONs)
VOC	0.480021
SO _x	0.228462
NO _x	6.990315
CO	0.407902
PM 10	0.033827

Pollutant	Emissions Per Year (TONs)
PM 2.5	0.029599
Pb	0.000000
NH ₃	0.000000
CO ₂ e	691.0

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

16.2 Aircraft & Engines

16.2.1 Aircraft & Engines Assumptions

T-7A
F404-GE-102
Trainer
Yes
1

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

16.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

Proprietary Information. Contact Air Quality Subject Matter Expert for More Information regarding this engine's Emission Factors.

16.3 Flight Operations

16.3.1 Flight Operations Assumptions

- Flight Operations Number of Aircraft: Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: Number of Annual Trim Test(s) per Aircraft:		9 78 0 0
- Default Settings Used: No		
- Flight Operations TIMs (Time In Mode)		
Taxi/Idle Out [Idle] (mins):	0	
Takeoff [Military] (mins):	32.15	
Takeoff [After Burn] (mins):	0	
Climb Out [Intermediate] (mins):	0	
Approach [Approach] (mins):	0	
Taxi/Idle In [Idle] (mins):	0	
- Trim Test		
Idle (mine). 12		

I filli I est	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9

Military (mins):	9
AfterBurn (mins):	3

16.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)TD: Test Duration (min)60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

16.4 Auxiliary Power Unit (APU)

16.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU per Aircraft	Operation Hours for Each LTO	Exempt Source?	Designation	Manufacturer
1	0.25	No	4501687C	Hamilton Sundstrand

16.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	СО	PM 10	PM 2.5	CO ₂ e
4501687C	211.0	0.010	0.230	1.380	1.070	-1.000	-1.000	740.4

16.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

17. Aircraft

17.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Colbert, AL; Cullman, AL; Franklin, AL; Lauderdale, AL; Marion, AL; Walker, AL; Winston, AL; Alcorn, MS; Benton, MS; Itawamba, MS; Lee, MS; Monroe, MS; Prentiss, MS; Tippah, MS; Tishomingo, MS; Union, MS; Chester, TN; Decatur, TN; Hardeman, TN; Hardin, TN; Lawrence, TN; McNairy, TN; Wayne, TN

Regulatory Area(s): NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-066)

- Activity Description:

2030: Starting in 2030, remove 273 T-38C low-altitude operations in IR-066.

- Activity Start Date

Start Month:	1
Start Year:	2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.028333
SO _x	-0.040422
NO _x	-0.072533
СО	-1.170732
PM 10	-0.042689

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.001511
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-122.2

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.028333	PM 2.5	-0.001511
SO _x	-0.040422	Pb	0.000000
NO _x	-0.072533	NH ₃	0.000000
СО	-1.170732	CO ₂ e	-122.2
PM 10	-0.042689		

17.2 Aircraft & Engines

17.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

17.2.2 Aircraft & Engines Emission Factor(s)

The chart of Englise Emissions I detors (15/100015 Idet)								
	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

17.3 Flight Operations

17.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	273
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	3.74
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

17.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

17.4 Auxiliary Power Unit (APU)

17.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?	-	
	LTO			

17.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation Fuel Flow	VOC	SOx	NOx	СО	PM 10	PM 2.5	CO ₂ e
--------------------------	-----	-----	-----	----	-------	--------	-------------------

17.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

18. Aircraft

18.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Lee, AR; Phillips, AR; Bolivar, MS; Calhoun, MS; Carroll, MS; Coahoma, MS; Grenada, MS; Leflore, MS; Montgomery, MS; Panola, MS; Quitman, MS; Sunflower, MS; Tallahatchie, MS; Tunica, MS; Webster, MS; Yalobusha, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-068)

- Activity Description:

2030: Starting in 2030, remove 87 T-38C low-altitude operations in IR-068.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.066344
SO _x	-0.094650
NO _x	-0.169840
СО	-2.741317
PM 10	-0.099958

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.003538
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-286.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)
VOC	-0.066344
SO _x	-0.094650
NO _x	-0.169840
CO	-2.741317
PM 10	-0.099958

Pollutant Emissions Per Year (TONs) PM 2.5 -0.003538 Pb 0.000000 NH₃ 0.000000 CO₂e -286.1

18.2 Aircraft & Engines

18.2.1 Aircraft & Engines Assumptions

Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer
Aircraft has After burn:	Yes
Number of Engines:	2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

18.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

18.3 Flight Operations

18.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	87
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

18.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs) TD: Test Duration (min) 60: Conversion Factor minutes to hours FC: Fuel Flow Rate (lb/hr) 1000: Conversion Factor pounds to 1000pounds EF: Emission Factor (lb/1000lb fuel) NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

18.4 Auxiliary Power Unit (APU)

18.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

18.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
	Flow							

18.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year APU_{POL} = APU * OH * LTO * EF_{POL} / 2000

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs) APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour) LTO: Number of LTOs

EF_{POL}: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

19. Aircraft

19.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove
- Activity Location

County: Benton, MS; Calhoun, MS; Carroll, MS; Chickasaw, MS; Clay, MS; Grenada, MS; Lafayette, MS; Marshall, MS; Montgomery, MS; Panola, MS; Pontotoc, MS; Quitman, MS; Tallahatchie, MS; Tate, MS; Union, MS; Webster, MS

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (IR-091)

- Activity Description:

2030: Starting in 2030, remove 108 T-38C low-altitude operations in IR-091.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.082358
SO _x	-0.117497
NO _x	-0.210835
СО	-3.403014
PM 10	-0.124085

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.004392
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-355.1

- Activity Emissions	[Flight Operation	s (includes Trim	Test & APU) part]:
----------------------	-------------------	------------------	--------------------

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.082358	PM 2.5	-0.004392
SO _x	-0.117497	Pb	0.000000
NO _x	-0.210835	NH ₃	0.000000
СО	-3.403014	CO ₂ e	-355.1
PM 10	-0.124085		

19.2 Aircraft & Engines

19.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine	
Aircraft Designation:	T-38C
Engine Model:	J85-GE-5R
Primary Function:	Trainer

Aircraft has After burn:YesNumber of Engines:2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

19.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

19.3 Flight Operations

19.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	108
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	27.48
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test	
Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

19.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)NE: Number of EnginesLTO: Number of Landing and Take-off Cycles (for all aircraft)2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_{IN}} + AEM_{IDLE_{OUT}} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs)

AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

19.4 Auxiliary Power Unit (APU)

19.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
	LTO			

19.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel VOC Flow	SO _x	NO _x	СО	PM 10	PM 2.5	CO ₂ e
-------------	------------------	-----------------	-----------------	----	-------	--------	-------------------

19.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

20. Aircraft

20.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location

County: Blount, AL; Cullman, AL; Franklin, AL; Jefferson, AL; Lawrence, AL; Marion, AL; Pickens, AL; Tuscaloosa, AL; Walker, AL; Winston, AL; Itawamba, MS; Monroe, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA; Birmingham, AL

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1014)

- Activity Description:

2030: Starting in 2030, remove 186 T-38C low-altitude operations in VR-1014.

- Activity Start Date Start Month: 1 Start Year: 2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.196602
SO _x	-0.280485
NO _x	-0.503300
CO	-8.123575
PM 10	-0.296213

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010485
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.7

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Polluta
VOC	-0.196602	PM 2.5
SO _x	-0.280485	Pb
NO _x	-0.503300	NH ₃
CO	-8.123575	CO ₂ e
PM 10	-0.296213	

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.010485
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-847.7

20.2 Aircraft & Engines

20.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

T-38C
J85-GE-5R
Trainer
Yes
2

- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

20.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

20.3 Flight Operations

20.3.1 Flight Operations Assumptions

⁻ Flight Operations

Number of Aircraft:

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	186
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	38.09
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0
razionale in francj (minis).	0

- Trim Test Idle (mins): 12 Approach (mins): 27 Intermediate (mins): 9 Military (mins): 9 AfterBurn (mins): 3

20.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE IN} + AEM_{IDLE OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines TGO: Number of Touch-and-Go Cycles (for all aircraft) 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year

AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

20.4 Auxiliary Power Unit (APU)

20.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

	(
Number of APU	Operation	Exempt	Designation	Manufacturer
per Aircraft	Hours for Each	Source?		
_	LTO			

20.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designat	tion	Fuel Flow	VOC	SOx	NOx	CO	PM 10	PM 2.5	CO ₂ e
		FIOW							

20.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons

21. Aircraft

21.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Remove

- Activity Location
 - County: Autauga, AL; Bibb, AL; Chilton, AL; Choctaw, AL; Clarke, AL; Clay, AL; Coosa, AL; Dallas, AL; Elmore, AL; Greene, AL; Hale, AL; Marengo, AL; Perry, AL; Pickens, AL; Shelby, AL; St. Clair, AL; Talladega, AL; Tallapoosa, AL; Tuscaloosa, AL; Wilcox, AL; Kemper, MS; Lowndes, MS; Noxubee, MS

Regulatory Area(s): Birmingham, AL; NOT IN A REGULATORY AREA

- Activity Title: 2030 T-38C MTR Low-Altitude Operations (VR-1031)

- Activity Description:

2030: Starting in 2030, remove 78 T-38C low-altitude operations in VR-1031.

- Activity Start Date

Start Month:1Start Year:2030

- Activity End Date

Indefinite:	Yes
End Month:	N/A
End Year:	N/A

- Activity Emissions:

Pollutant	Emissions Per Year (TONs)
VOC	-0.069589
SO _x	-0.099280
NO _x	-0.178147
CO	-2.875404
PM 10	-0.104847

Pollutant	Emissions Per Year (TONs)
PM 2.5	-0.003711
Pb	0.000000
NH ₃	0.000000
CO ₂ e	-300.1

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

Pollutant	Emissions Per Year (TONs)	Pollutant	Emissions Per Year (TONs)
VOC	-0.069589	PM 2.5	-0.003711
SO _x	-0.099280	Pb	0.000000
NO _x	-0.178147	NH ₃	0.000000
CO	-2.875404	CO ₂ e	-300.1
PM 10	-0.104847		

21.2 Aircraft & Engines

21.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine
 Aircraft Designation: T-38C
 Engine Model: J85-GE-5R
 Primary Function: Trainer
 Aircraft has After burn: Yes
 Number of Engines: 2
- Aircraft & Engine Surrogate Is Aircraft & Engine a Surrogate? No Original Aircraft Name: Original Engine Name:

21.2.2 Aircraft & Engines Emission Factor(s)

	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
Idle	520.00	16.80	1.07	1.08	177.45	4.70	4.02	3234
Approach	854.00	7.84	1.07	0.84	106.29	2.80	1.85	3234
Intermediate	1030.00	2.78	1.07	0.70	65.07	1.79	0.69	3234
Military	2220.00	0.75	1.07	1.92	30.99	1.13	0.04	3234
After Burn	7695.00	6.97	1.07	6.23	53.43	0.25	0.09	3234

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

21.3 Flight Operations

21.3.1 Flight Operations Assumptions

- Flight Operations	
Number of Aircraft:	17
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft:	78
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft:	0
Number of Annual Trim Test(s) per Aircraft:	0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)	
Taxi/Idle Out [Idle] (mins):	0
Takeoff [Military] (mins):	32.15
Takeoff [After Burn] (mins):	0
Climb Out [Intermediate] (mins):	0
Approach [Approach] (mins):	0
Taxi/Idle In [Idle] (mins):	0

- Trim Test

Idle (mins):	12
Approach (mins):	27
Intermediate (mins):	9
Military (mins):	9
AfterBurn (mins):	3

21.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
LTO: Number of Landing and Take-off Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

 $AE_{LTO} = AEM_{IDLE_IN} + AEM_{IDLE_OUT} + AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{LTO}: Aircraft Emissions (TONs) AEM_{IDLE_IN}: Aircraft Emissions for Idle-In Mode (TONs) AEM_{IDLE_OUT}: Aircraft Emissions for Idle-Out Mode (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for TGOs per Year

AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000

AEM_{POL}: Aircraft Emissions per Pollutant & Mode (TONs)
TIM: Time in Mode (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines
TGO: Number of Touch-and-Go Cycles (for all aircraft)
2000: Conversion Factor pounds to TONs

- Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$

AE_{TGO}: Aircraft Emissions (TONs) AEM_{APPROACH}: Aircraft Emissions for Approach Mode (TONs) AEM_{CLIMBOUT}: Aircraft Emissions for Climb-Out Mode (TONs) AEM_{TAKEOFF}: Aircraft Emissions for Take-Off Mode (TONs)

- Aircraft Emissions per Mode for Trim per Year AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000

AEPS_{POL}: Aircraft Emissions per Pollutant & Power Setting (TONs)
TD: Test Duration (min)
60: Conversion Factor minutes to hours
FC: Fuel Flow Rate (lb/hr)
1000: Conversion Factor pounds to 1000pounds
EF: Emission Factor (lb/1000lb fuel)
NE: Number of Engines

NA: Number of Aircraft NTT: Number of Trim Test 2000: Conversion Factor pounds to TONs

- Aircraft Emissions for Trim per Year

 $AE_{TRIM} = AEPS_{IDLE} + AEPS_{APPROACH} + AEPS_{INTERMEDIATE} + AEPS_{MILITARY} + AEPS_{AFTERBURN}$

AE_{TRIM}: Aircraft Emissions (TONs) AEPS_{IDLE}: Aircraft Emissions for Idle Power Setting (TONs) AEPS_{APPROACH}: Aircraft Emissions for Approach Power Setting (TONs) AEPS_{INTERMEDIATE}: Aircraft Emissions for Intermediate Power Setting (TONs) AEPS_{MILITARY}: Aircraft Emissions for Military Power Setting (TONs) AEPS_{AFTERBURN}: Aircraft Emissions for After Burner Power Setting (TONs)

21.4 Auxiliary Power Unit (APU)

21.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

Number of APU	Operation	Exempt	Designation	Manufacturer			
per Aircraft	Hours for Each	Source?					
	LTO						

21.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

Designation	Fuel Flow	VOC	SOx	NO _x	CO	PM 10	PM 2.5	CO ₂ e
-------------	--------------	-----	-----	-----------------	----	-------	--------	-------------------

21.4.3 Auxiliary Power Unit (APU) Formula(s)

- Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$

APU_{POL}: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)
APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)
LTO: Number of LTOs
EF_{POL}: Emission Factor for Pollutant (lb/hr)
2000: Conversion Factor pounds to tons